Mostrar el registro sencillo del ítem

dc.contributor.authorMayhua Ramirez, Glen Angeles_PE
dc.date.accessioned2021-06-17T17:08:16Z
dc.date.available2021-06-17T17:08:16Z
dc.date.issued2018-06-13
dc.identifier.citationMayhua Ramirez, G. A. (2018). Matrices y sistemas lineales Matrices. Suma y producto de matrices. Tipos de Matrices. Operaciones elementales sobre filas y columnas. Matriz reducida. Rango de una matriz. Inversas de matrices cuadradas. Determinante de matrices cuadradas. Transformaciones lineales y matrices. Sistema de ecuaciones lineales. Solución de sistema lineales (Monografía de pregrado). Universidad Nacional de Educación Enrique Guzmán y Valle, Lima, Perú.es_PE
dc.identifier.urihttp://hdl.handle.net/20.500.14039/5247
dc.description.abstractEl objetivo de este trabajo de investigación es dar a conocer que se denomina matriz a un arreglo rectangular de números reales ordenados en filas o columnas encerrados entre paréntesis o corchetes. Los elementos de la matriz pertenecen a un cuerpo conmutativo K que puede ser de números racionales, reales y complejos. El grupo total de las matrices que tienen un orden m x n sobre el espacio vectorial (K,.), , K mxn + cumplen dos condiciones una ley de composición interna (adición) y una ley externa (multiplicación), definiéndose las operaciones de matrices, adición, multiplicación de un escalar por una matriz y el producto de matrices. Considerándose que para sumar matrices deben ser del mismo orden y para multiplicar la cantidad de columnas contenidas en la primera matriz debe tener la misma cantidad de filas de la segunda matriz. Las matrices se clasifican de acuerdo a su forma en matriz fila, columna, rectangular, cuadrada, transpuesta, simétrica, anti simétrica y de acuerdo a su elementos en: matriz nula, matriz diagonal, matriz identidad, escalar, matriz triangular y matrices especiales como la matriz ortogonal, nilpotente, involutiva y hermitiana. Las transformaciones que se da al reducir una matriz se realiza a través de las operaciones o transformaciones elementales de filas y columnas sin hacer cambios en el orden de la matriz hasta obtener la matriz escalonada, la matriz escalonada reducida y matrices equivalentes que nos permitirán hallar el rango de una matriz y resolver sistemas de ecuaciones lineales. El Rango de la matriz se define como el número de filas o columnas linealmente independientes.es_PE
dc.description.abstractThe objective of this research work is to show that a rectangular arrangement of real numbers ordered in rows or columns enclosed in parentheses or square brackets is called a matrix. The elements of the matrix belong to a commutative field K which can be rational, real and complex numbers. The total group of matrices that have an order mxn over the vector space (K ,.),, K mxn + meet two conditions: an internal composition law (addition) and an external law (multiplication), defining the matrix operations, addition, multiplication of a scalar by a matrix and the product of matrices. Considering that to add matrices they must be of the same order and to multiply the number of columns contained in the first matrix they must have the same number of rows of the second matrix. The matrices are classified according to their shape in a row, column, rectangular, square, transposed, symmetric, anti-symmetric matrix and according to their elements in: null matrix, diagonal matrix, identity matrix, scalar, triangular matrix and special matrices such as the orthogonal, nilpotent, involutional and Hermitian matrix. The transformations that occur when reducing a matrix are carried out through the elementary operations or transformations of rows and columns without making changes in the order of the matrix until obtaining the echelon matrix, the reduced echelon matrix and equivalent matrices that will allow us to find the rank of a matrix and solve systems of linear equations. Matrix Rank is defined as the number of linearly independent rows or columns.es_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional de Educación Enrique Guzmán y Vallees_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rightsAttribution-NoDerivatives 4.0 Internacional*
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/*
dc.subjectRendimiento académicoes_PE
dc.titleMatrices y sistemas lineales Matrices. Suma y producto de matrices. Tipos de matrices. Operaciones elementales sobre filas y columnas. Matriz reducida. Rango de una matriz. Inversas de matrices cuadradas. Determinante de matrices cuadradas. Transformaciones lineales y matrices. Sistema de ecuaciones lineales. Solución de sistema lineales.es_PE
dc.typeinfo:eu-repo/semantics/monographes_PE
thesis.degree.nameTítulo Profesional de Licenciado en Educaciónes_PE
thesis.degree.grantorUniversidad Nacional de Educación Enrique Guzmán y Valle. Facultad de Cienciases_PE
thesis.degree.disciplineMatemática e Informáticaes_PE
dc.subject.ocdehttp://purl.org/pe-repo/ocde/ford#1.01.00es_PE
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_PE
dc.publisher.countryPEes_PE
renati.author.dni47163721
renati.levelhttp://purl.org/pe-repo/renati/nivel#tituloProfesionales_PE
renati.discipline541066es_PE
renati.jurorMesias Borja, Dora Escolásticaes_PE
renati.jurorQuiroz Quiroz, Jorge Enriquees_PE
renati.jurorCuenca Cervantes, Faustino Fortunatoes_PE


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

info:eu-repo/semantics/openAccess
Excepto si se señala otra cosa, la licencia del ítem se describe como info:eu-repo/semantics/openAccess