MONOGRAFÍA

Sistemas de Control de Temperatura
Presentada por:

Edwin Jhonatan Copacondori Quispe

Para optar al Título Profesional de Licenciado en Educación
Especialidad: Automatización Industrial

Lima – Perú
2018
MONOGRAFÍA

Sistemas de Control de Temperatura

MIEMBROS DEL JURADO

Dr. Ermes Ysidro, RIVERA MANDARACHE
PRESIDENTE

Lic. Vicente Constantino, MAYTA CHUQUÍN
SECRETARIO

Lic. Roger Octavio, QUINTEROS OSORIO
VOCAL

Línea de Investigación: Tecnología y Soportes Educativos
Dedicatoria

A Dios, por sus grandes bendiciones, a mis padres por brindarme su apoyo incondicional y sus consejos para ser alguien mejor en la vida; a mi esposa, siempre ayudándome en todo y mis hijos que son mi fortaleza en mi vida diaria. A mi gran amigo y compañero Rogelio Tacza, por brindarme su amistad, apoyo y consejos; siempre estarás presente en mi vida, que Dios te tenga en su gloria, mi querido amigo…
Tabla de contenidos

Caratula..i
Monografía ... ii
Dedicatoria .. iii
Índice .. iv
Lista de figuras .. vi
Lista de tablas ... vi
Introducción ... vii
Capítulo I ... viii
 1.1. Concepto de temperatura ... 10
 1.2. Escalas termométricas ... 11
 1.3. Diferentes escalas termométricas ... 11
 1.3.1. Escala termométrica Celsius (centígrados) .. 11
 1.3.2. Escala termométrica de Fahrenheit .. 11
 1.3.3. Escala termométrica Réaumur ... 11
 1.3.4. Escala termométrica absoluta (Kelvin) ... 12
 1.4. Definición de sistemas de control ... 12
 1.5. Tipología en sistemas de control .. 16
 1.5.1. Sistema de control manual ... 17
 1.5.2. Sistema automático .. 18
 1.5.2.1. Sistema de control de lazo abierto .. 18
 1.5.2.2. Sistema de control de lazo cerrado .. 19
 1.5.3. Características de un sistema automático ... 20
 1.6. La ingeniería en los sistemas de control ... 22
 1.7. Aplicaciones ... 23
Capítulo II ... 24
 2.1. Fundamentación ... 24
 2.2. Tipos de sensores de temperatura ... 25
 2.2.1. Los termostatos .. 25
 2.2.2. Termo resistencias (RTD) .. 25
 2.2.2.1. Detectores de temperatura resistivos, RTD 25
 2.2.3. Termistores ... 28
 2.2.3.1. Tipos de termistores .. 29
 2.2.4. Los termopares .. 31
 2.2.4.1. Tipos de termopares disponibles en el mercado 31
 2.2.4.2. Diseño de los termopares ... 35
 2.2.4.3. Tubos de protección ... 35
 2.2.4.4. Respuesta térmica ... 36
 2.2.4.5. Tubos de protección cerámicos .. 36
Lista de Figuras

Figura 1 – Esquema general de un sistema... 12
Figura 2 – Esquema general de un sistema de control... 13
Figura 3 – Sistema de control.. 16
Figura 4 – Control lazo cerrado vs. Control lazo abierto... 20
Figura 5 – Tipos de termo resistencia... 26
Figura 6 – Conductores.. 28
Figura 7 – Coeficiente de temperatura... 29
Figura 8 – Tipos de termistores.. 30
Figura 9 – Rango de cables... 32
Figura 10 – Reflectores de energía.. 38
Figura 11 – Radiación de energía.. 39
Figura 12 – Esquema del pirómetro.. 41
Figura 13 – Pirómetro óptico.. 43
Figura 14 – Modelo PLC.. 49
Figura 15 – Logo siemens.. 53
Figura 16 – Controlador de temperatura West.. 54
Figura 17 – Pulsadores eléctricos... 55
Figura 18 – Lámparas señalizadoras... 55
Figura 19 – Contactor clase C, 9 amperios-220v ac... 56
Figura 20 – Plc siemens logo v8 24dc... 56
Figura 21 – Pantalla logo TDE... 57
Figura 22 – Controlador de temperatura universal WEST 6100+................................. 57
Figura 23 – Controlador de temperatura ON/OFF MH1210W.................................. 58
Figura 24 – Pt1.. 58
Lista de Tablas

Tabla 1. Composición, rango de temperaturas, diámetros de alambre apropiado y fuerzas electromotrices (fem) correspondientes a distintos termopares

Tabla 2. Ventajas y desventajas de los sensores

Tabla 3. Aplicación de los sensores de temperatura

Tabla 4. Dispositivos de medición de temperatura
Introducción

Desde tiempos remotos la energía ha sido vital para la sobrevivencia del ser humano, por ejemplo, el hombre tuvo que utilizar el fuego para generar temperatura y poder alimentarse; asimismo fue utilizando para la iluminación y poder pernoctar en ambientes oscuros e inhóspitos como cavernas donde también era necesario una calefacción con una temperatura que le ayude a combatir el frío. Con el transcurso del tiempo, el hombre fue desarrollando otros sistemas más convencionales que le fue permitiendo usar la energía y mantener la temperatura por más tiempo. Las primeras revoluciones industriales favorecieron el uso de la máquina a vapor que permitió mejorar los sistemas de energía, funcionamiento, capacidad para la industria y la manufactura.

Dentro de la automatización industrial la palabra más utilizada es *CONTROL*, pues el control es la observación cuidadosa que sirve para hacer una comprobación, y *sistema*, es el conjunto de reglas y normas que tiene relación entre sí, y la temperatura, que es el grado o nivel térmico de un cuerpo o atmósfera.

Un circuito de control de la temperatura, es canalizado desde el ambiente, el cual para su medición y control utiliza un sensor que capta la señal y la trata de manera analógica, para luego ser procesada por un sistema, el cual ordena su activación o reactivación de la temperatura.

Los sistemas de control de temperatura son dispositivos que regulan la temperatura en los ambientes deseados, por el cual se monitorea y se registran los niveles del mismo. Estos controles son direccionados, ya sean por medios electrónicos inalámbricos o por sistemas de computadora, los cuales dan lectura y registran los cambios de temperatura. Este campo de aplicación se puede extender a lugares domésticos como hogares, calefacción, piscinitas, a nivel industrial o centros comerciales. Su área de influencia ha crecido en los últimos años, por la gran capacidad y necesidad que surge a partir de las nuevas exigencias del mercado y la sociedad.
En el presente trabajo se dará a conocer de la utilización los diferentes tipos de control.

En el capítulo I: Se presentan los conceptos y tipos de sistemas de control de temperatura, escalas termométricas y sus diferentes aplicaciones.

En el capítulo II: aborda los tipos de control de temperatura. Siempre el conocer muchos factores que son casi siempre son los más utilizados modelos lineales reducidos, como se puede llegar a conocer las estrategias sencillas.

En el capítulo III: Se desarrollan los controladores avanzados de temperatura como Los PLC, la importancia y sus ventajas de los PLC’s en la industria y el empleo del controlador de temperatura universal West 6100 en este proceso.

En el capítulo IV: Se realiza el armado e instalación del módulo de control de temperatura.

En el capítulo V: Se desarrolla todo el aspecto pedagógico, considerando el tema principal, donde el docente muestra todas sus habilidades de enseñanza-aprendizaje hacia al alumno presentando el material didáctico.

Finalmente se presenta las conclusiones, referencias bibliográficas de los contenidos para este trabajo.
Capítulo I

Control de Temperaturas

1.1. Concepto de temperatura

Cuando nos referimos a la temperatura estábamos hablando del nivel térmico que es una magnitud, es decir, el grado de temperatura que un cuerpo contiene.

Todas las sustancias con una determinada forma ya sea líquida, sólida o gaseosa, están formada por moléculas que se hallan en constante movimiento. La suma de estas moléculas en movimiento que se interrelacionan, se denomina energía térmica y el concepto de temperatura alude a la medición promedio de esta energía.

En otras palabras, el término temperatura alude a la propiedad de fijación y cambio en la medición, es decir, un cuerpo puede pasar de una temperatura alta a otra más baja. Desde el punto de vista cualitativo, un cuerpo que es más caliente, por ende, tendrá un alto grado de temperatura, que a diferencia de un cuerpo frío, que presentará una temperatura baja; desde un enfoque cuantitativo, las altas temperaturas, pueden provocar dilatación en los cuerpos al ser sometidos.

En cuanto a la medición de la temperatura, existen diversos instrumentos pata diversos fenómenos o estados, por ejemplo, para el tema médico, se usa termómetro corporal, mientras que, para el medio ambiente, un termómetro ambiental.

Esta diversidad esta direccionada dependiendo de la medición del fenómeno y las condiciones que la provocan.
1.2. Escalas termométricas

Las escalas termométricas son aquellas que se utilizan para indicar la temperatura tomando como base ciertos puntos de referencia. La temperatura se mide con la ayuda de instrumentos basados en una u otra propiedad de la sustancia energética que varía con la temperatura. Estos instrumentos están calibrados de acuerdo a la escala de temperatura generalmente aceptada y estas escalas son:

- Escala termométrica Celsius.
- Escala termométrica Fahrenheit.
- Escala termométrica Réaumur
- Escala termométrica Kelvin.

1.3. Diferentes escalas termométricas

1.3.1. Escala termométrica Celsius (centígrados).

Llamada así por el científico sueco Anders Celsius (1701-1744), esta escala se ha convertido en un estándar internacional. La escala es “centesimal”, es decir que está dividida en 100 partes iguales, cada una de las cuales se denomina “grado centígrado” o “grado Celsius”, y cuyo símbolo es ºC. El valor 0 se asigna convencionalmente a la temperatura de fusión del hielo y el valor 100 a la temperatura del agua hirviendo.

1.3.2. Escala termométrica de Fahrenheit.

Esta escala le debe su nombre al científico Daniel Gabriel Fahrenheit (1686-1736). Ahora se utiliza principalmente en los Estados Unidos y en el Reino Unido (aunque ya no oficialmente). La escala se divide en 180 partes iguales, cada una denominada grado Fahrenheit, cuyo símbolo es ºF. El valor 32 se asigna a la temperatura del hielo y el valor 212 a la temperatura del agua hirviendo, ambos a la presión atmosférica del nivel del mar.

1.3.3. Escala termométrica Réaumur.

Esta escala fue inventada por el científico francés René-Antoine Ferchault de Réaumur (1683-1757). Se divide en 80 partes iguales, cada una llamada grado Réaumur
cuyo símbolo es ° R. El valor 0 se asigna a la temperatura de fusión del hielo y el valor 80 a la temperatura del agua hirviendo, ambos a la presión atmosférica del nivel del mar.

1.3.4. Escala termométrica absoluta (Kelvin).

Desarrollada por el científico británico Lord Kelvin (1824-1907), pionero en termodinámica; esta escala utiliza los grados Kelvin. El grado cero Kelvin, también conocido como “cero absoluto”, representa la temperatura más baja que las de la escala Celsius, excepto que la escala de Kelvin establece la temperatura más baja a 0. Las bajas posibles según la teoría termodinámica. Es igual a - 273.16 grados centígrados.

1.4. Definición de sistemas de control

Los sistemas dinámicos se constituyen elementos o entes que reciben estimulaciones o acciones exteriores o también llamadas variables de entrada, que consiste en provocar algún cambio en el sistema, la cual se denomina variables de salida. Esta respuesta externa en el sistema, se desglosa en dos grupos, las cuales se denominan un variable de control y otra de perturbación; en la primera se puede ejercer un grado de control hasta cierto límite, pero en la segunda no es posible esa característica.

![Figura 1 – Esquema general de un sistema (autoría)](image)

El objeto de un sistema de control, es encontrar por medio de la manipulación en la variable de control, una especie de influencia o dominio sobre la variable en la salida,
de tal forma que se hallen o establezcan unos valores prefijados. En estos sistemas se consigue un máximo control que es el ideal cumpliendo algunas consignas o requisitos que se plantean a continuación:

1. Permitir que exista estabilidad y específicamente ser estructurado frente a incidencias y faltas en modelo.
2. Se busca que el sistema sea eficiente, en lo posible, para garantizar el proceso; esto significa que las acciones de control en las variables sean accesibles y ejecutadas para contrarrestar comportamientos irreales.
3. Ser un sistema que se caracterice por ser implantador y versátil, en cuanto a su operación en tiempo real, con el apoyo de una computadora. Los aspectos elementales, que son parte del sistema de control y que puedan acceder a su manipulación, se menciona a continuación:
 - Sensores: Son elementos que permiten reconocer los valores en las mediciones de variables de un sistema. Controladores: Empleando valores determinados por sensores y regla impuesta, que tienen la función de calcular en su aplicación para cambiar en las variables que lo controlan, según cada estrategia.
 - Actuador: Es la acción que implica la ejecución de calcular por los controladores y que hace modificar las variables de control, la figura 2 se observa el croquis o ruta de funcionamiento del proceso de control de manera genérica.

Figura 2 – Esquema general de un sistema de control (autoría)

El ser humano desde tiempos remotos tuvo la invención de crear el fuego, a partir del rozamiento o la fricción de elementos, como la piedra, para la obtención del fuego, que le sirva como un tipo de energía para la generación de calor y la combustión de
alimentos en la cocina. La frotación enérgica de este pedernal, originó una nueva forma de crear fuego, teniendo en cuenta que no era la única, sino el comienzo de una larga historia para su invención.

Lo sorprendente de hoy en día, es que la piedra sigue siendo una materia prima para algunos instrumentos o equipos que generan fuego, por ejemplo, en el caso de los encendedores, que son herramientas que no han sido descubiertas por casualidad como el fuego en la edad primitiva, sino más bien son sistemas que generan calor y fuego, a partir de la frotación de pequeñas piedras, que siendo rozada por un cuerpo metálico pequeño, desprende una chispa que es complementada con el gas para provocar el fuego en los encendedores.

Es lógico que los sistemas de hoy, así como en la antigüedad, tienen una variabilidad en su funcionamiento, basta que un componente específico cambie para que el sistema también se ve obligado a hacerlo; este principio funciona en todos. De la misma forma, cuando uno o más componentes no funcionan o no realizan la tarea para lo cual fueron diseñados, deben ser cambiados de manera independiente, o por último, el resultado final de todos los sistemas.

Los sistemas automovilísticos también poseen el mismo funcionamiento o lógica, teniendo en cuenta que se puede llegar a controlar varios componentes desde la batería, la presión de llantas, el agua que refrigera, el aceite et, pero además se conoce también que se puede controlar la velocidad del auto que es el resultado del sistema y funcionamiento de un motor, en suma.

Veamos un ejemplo claro desde esta experiencia:

En el caso de una cocina doméstica que sirve para cocinar y para la cocción de algunos alimentos, en esta parte surge la interrogante, ¿cómo hacemos para monitorear y vigilar la temperatura del fuego o el horno para la preparación de los alimentos?

En primer lugar, se enciende el horno o la cocina, luego se gira la perilla de acuerdo a la cantidad de fuego o calor que necesitamos para la cocción de los alimentos. En ese
momento, al girar tal perilla, se regula el ingreso del gas que se desea fijando la temperatura deseada que llega hasta el quemador o el horno desde un sistema integrado.

Estas acciones que se menciona nos permiten ejecutar y regular la temperatura, el cual nos ayuda a controlar el calor para mantener y establecer la calidad de cocción o la regularidad de los alimentos que se deseen. Este proceso de por sí ya fija el control del proceso.

A medida que el tiempo pasó y los sistemas manuales se vieron superados por sistemas más sofisticados y convencionales, se observaron grandes cambios y la versatilidad de equipos, que regulaban con mayor precisión y rapidez, no solo para una cantidad doméstica de productos o insumos, ahora lo pueden hacer para grandes cantidades a nivel industrial y a gran escala. En ese sentido, los procesos resultan más difíciles, costosos y complejos con una duración mayor. En tal sentido, ya no fue posible controlar esos sistemas de manera manual, sino que se requiere de múltiples sistemas y mecanismos, entre ellos podemos mencionar, por ejemplo:

En una fábrica de embotellamiento de líquidos, observemos y analicemos; ¿qué hace que su función sea adecuada. Tomando una sola botella para el pegado de etiquetas, ¿luego para vaciar el contenido con precisión y no derramar o rebalsar, o en todo caso, mediante sensores comunicar el mal funcionamiento, y por ende, la máquina deja de funcionar.

Desde ese principio, entendemos que el control de sistemas se ha ido cada vez más complejeizando y mejorando en su aspecto convencional, que también pasaron a los artefactos domésticos, y ha mejorado la calidad de vida de las personas. Por ejemplo, antiguamente sabemos que las planchas no funcionaban con electricidad sino con trozos de carbón, que generan el calor, sin embargo, hoy en día, los sistemas de control hacen que la plancha tenga su regulador de temperatura, así como los tipos y modelos para cada necesidad.

Una diferencia era que estas planchas de carbón podían demorar mucho para calentar, y de la misma forma, no podía mantenerse por mucho tiempo esta misma temperatura encima la ropa podía mancharse por las cuestiones del carbón
1.5. Tipología en sistemas de control

Para llegar a un control de sistemas o procesos en cualquier equipo, instrumento, artefacto, se requiere de un conjunto de componentes hidráulicos, eléctricos o mecánicos que de manera interconectada puedan recoger un conjunto de información sobre su procesamiento y funcionamiento, que al ser comparados o examinados, pueden cambiar la configuración para alcanzar o modificar procesos de acuerdo a las necesidades que se solicita.

A esta capacidad de hacer cambios y movimientos de manera convencional, se denomina sistema de control, que está sujeto a mecanismos matemáticos; para analizarlos se supone que en sus componentes existe una lógica de enviar y recibir información produciéndose un cambio o respuesta en el sistema.

Estos sistemas convencionales se pueden observar, mediante la siguiente gráfica, de manera rectangular o bloques que estan conectados por flechas, los cuales nos muestra la interconexión entre los componentes y los resultados que genera. La forma más sencilla de entender esta lógica es conocer y observar el proceso de control que hace entrar y salir la información, generando cambios. Ejemplo: el sistema de perilla de un horno de cocina.

Figura 3 – Sistema de control (autoría)
1.5.1. Sistema de control manual.

Característica

Un controlador manual es aquel que tiene sus operaciones controladas o representadas a mano, en el punto de localización del controlador de un sistema.

Tipos

Es de entender que la acción del hombre es la que actúa frente a un sistema para el controlar y monitorear; por ejemplo, la acción que ejerce cuando frena o acelera, en el caso del manejo de automóviles.

Aplicaciones: En este apartado podemos encontrar diversas aplicaciones, ya sean domésticas o industriales, como, por ejemplo, la hornilla de cocina, el sistema de embotellamiento de una fábrica, los sensores de una máquina de impresión, etc.

Clasificación de los sistemas de control según su comportamiento y medición

Control: Se encarga de seleccionar las entradas de un sistema de forma que compenetren de salida y entrada, y se cambie de acuerdo a las necesidades. Es de saber que siempre se encuentra para la verificación en el logro de objetivos debidamente planificados. Para el control, es vital la medición y cuantificación de los resultados.

Detectar desviaciones: Uno de los aspectos vitales, es la detección de irregularidades o sistemas fallidos, que es inherente a todo proceso de control; en ese sentido, todo proceso del sistema debe tener un regulador e identificador de errores o anormalidades del sistema.

Controlador (electrónico): Se trata de un dispositivo electrónicamente manipulable que ejerce la competencia de los seres humanos que pueda ejercer el control. Se observa bajo cuatro aspectos consecutivos: calcular, ajuste, comparación y limitación.
1.5.2. Sistema automático.

Los sistemas de respuesta son originados por un dispositivo que necesariamente es controlado de manera manual, su respuesta es automática y sin intervención del hombre. En cuanto a los tipos de sistemas automáticos, existen dos modalidades, Una señal de lazo abierto siempre va depender de la entrada donde se posesiona en todo circuito de control, por ello es necesario conocer el tipo de entrada y un sistema de lazo cerrado es aquel que depende de la salida, es decir de la retroalimentación que genera la señal y en base a esto cambia su estado la entrada.

1.5.2.1. Sistema de control de lazo abierto.

Es un sistema en que solo participa el proceso sobre la comunicación de entrada, que al mismo tiempo, da como resultado una señal en salida que no depende necesariamente de la de entrada, empero sostenida en la primera. Esto trae como significado que no existe una retroalimentación hacia los controladores que puedan ajustarse a la acción de control. En otras palabras, esta señal de salida no es convertible a la de entrada para los controladores.

Ejemplo A: para llenar un tanque de agua, la regulación está en su sistema o dispositivo que se encarga de regular el llenado de agua; es así que una manguera que llene el tanque, se cerrará de manera automática cuando esta llegue a su límite.

Ejemplo B: en un equipo doméstico como una tostadora, nosotros hacemos que el tiempo sea regulado mediante el dispositivo para que el producto sea comestible y no llegue a quemar.

En todo sistema de control se debe verificar el requerimiento, tanto de los elementos necesarios para el desarrollo siempre deben permitir las mediciones adecuadas durante el proceso de ejecución para tener un mejor desempeño del proceso.
1.5.2.2. Sistema de control del lazo cerrado.

Se denomina así a los sistemas en que las acciones de control se encuentran en función a la comunicación y señal de salida. Los procesos del sistema cerrado, utilizan una

retroalimentación, seguidos desde un resultado de fin, que ajusta las acciones de control de los efectos.

Los controles de lazo cerrado son importantes cuando se presenta una de las siguientes situaciones:

- Cuando el hombre no puede controlar el sistema.
- Un gran y complejo de sistema que el hombre no podría controlar y se necesita toda una regulación sistematizada.
- También se entiende que el hombre es sensible al cansancio y fatiga, por lo que estos sistemas son pertinentes para su accionar automático y el hombre pueda garantizar su normal funcionamiento.

Sus cualidades son:

- Ser sistemas complejos y enormes en cantidades de parámetro.
- La comparación de entrada y salida afecta a los sistemas de control del circuito. Su labor importante es retroalimentar.
- Tener capacidad de estabilidad a la perturbación y variabilidad interna.

Un ejemplo vital sería:

Los termotanques que se autorregulan cuando el agua llega a su límite y no podemos manejarlo de manera manual, porque su sistema opera automáticamente en su cerrado.

Otro ejemplo sería: los depósitos o tanques de inodoros, cuando la boya flotante sube hace que el sistema se cierre y no pueda circular o pasar más agua.
1.5.3. Características de un sistema automático.

Indicador de corriente de ingreso

Se considera como un reforzador, aplicando un sistema desde el inicio como fuente de energía externa, con el fin de que los sistemas puedan producir una conclusión o respuestas precisa.

Indicador de corriente de salida

Es un tipo de respuesta que el sistema obtiene, que a su vez no puede concatenar con las respuestas que asumía la entrada.

Figura 4 – Control lazo cerrado vs. Control lazo abierto. Fuente: Holman (1999)
Variable de manipulación: Es un elemento que cambia su magnitud, logrando una respuesta que se desea. En otras palabras, se ejerce movilidad en el ingreso de las secuencias.

Variable de control: Se dice al elemento que deseamos controlar, en otras palabras, se define la salida en el proceso.

Conversión: Por medio de los receptores se van originando las variaciones o alteraciones que se manifiestan en las variables.

Variaciones exógenas: tenemos elementos que inciden en las acciones de producir una alteración de orden en corrección.

Fuentes de energía: normalmente proporciona o provee la energía suficiente para realizar desarrollar alguna actividad.

Retroalimentación: Es una cualidad sobresaliente en los sistemas controlados del sistema cerrado. Es una correlación ordinal o secuencial de causalidad, es decir de causas y efectos, entre variables en cuestión. Dependiendo de las acciones de corrección que asuma el sistema, a su vez que pueda apoyar a una decisión, cuando se ejerce o produce un retorno, se menciona que se da una retroalimentación negativa; en cambio, sí existe un apoyo a la decisión inicial, habrá una retroalimentación positiva.

Variable de fase: Son los indicadores o dimensiones que resultan de transformar el sistema original de la forma canónica que es controlable, de esta sucesión, se puede derivar el sistema de control, cuya característica debe ser completo para un mayor control del sistema.
1.6. La ingeniería en los sistemas de control

Las situaciones problema que se puedan originar en la ingeniería de los sistemas de control, se pueden abordar desde dos aspectos fundamentales tales como:

Análisis de los diseños

En este apartado se investiga y analizan las cualidades de un sistema operativo, en donde se escogen componentes o elementos para la creación de un sistema controlado, que después pueda ejecutar una tarea en particular.

Los métodos en diseños:

En esta sección se hace énfasis a los componentes en dos aspectos, los cuales son: un diseño por síntesis y el otro por análisis.

El diseño por análisis, es cuando se hacen modificaciones en las cualidades o características de un sistema en ejecución o de un modelo estandarizado sistemático.

El diseño por síntesis: se configura la forma de los sistemas de acuerdo a sus especificaciones.

Representaciones

Las representaciones de las cuestiones en los sistemas de control se ven manifestadas y ejecutadas, mediante tres ecuaciones o modelos básicos representacionales, las cuales son: integrales, ecuaciones, diferenciales, derivadas y otras ecuaciones de cálculo matemático.

Cada sistema representacional se debe expresar por una ecuación matemática y los diagramas en bloques y figuras de flujograma, son expresiones gráficas que buscan la reducción del proceso correctivo del sitio, sin importar su caracterización esquemática o cuando se requiera información detallada de los sistemas.

Los operadores matemáticos ayudan a los sistemas de control de una fábrica o proceso de producción a tener una sólida sistematización de información y control de tareas mediante la matematizarían de los circuitos y redes eléctricas.
1.7 Aplicaciones

Los sistemas entendidos como “el operar por si solos”, como un conjunto de cambios que se necesita durante el funcionamiento, aun así, cuando se remplaza el operador humano a cambio de dispositivos de alta tecnología que operan sobre el sistema.

Hablamos de sistemas automáticos que controlan los circuitos, por ejemplo; calderas, inodoros, tanques de agua, alumbrado público.

En la consideración de los sistemas automáticos controlados podemos mencionar lo que se denomina lazo de control de manera automática y manual; por ejemplo:

Supongamos que necesitamos hervir un recipiente de agua en una cocina a gas; suele ocurrir que cuando el agua llegue a su punto de ebullición, esta se pueda derramar o rebalsar, y existe la posibilidad que el agua apague la perilla de donde sale el fuego. Ahora, en el primer caso, si la persona no se da cuenta cuando el agua entra a un punto de ebullición, se denomina sistema de lazo abierto; mientras si existe un sistema que nos pueda comunicar el punto de ebullición y la persona acude y baja la llama de fuego de la perilla de la cocina, entonces habrá un control y la llama disminuye (entrada del sistema) será un sistema de lazo cerrado.
Capítulo II

Sensores de Temperatura

2.1. Fundamentación

Se conoce por datos estadísticos que en promedio el 16% de diversos procesos a nivel industrial, calculan, miden o pueden controlar la temperatura. En base a estudios de encuestas que se han realizado recientemente, la medición de la temperatura se eleva a un ritmo de 3.6 % por año. Este trabajo tiene la proyección de otorgar a los estudiantes un abanico amplio de su pasado y desarrollo de esta etapa relevante en la medición y cálculo de las teorías y los elementos que se utilizan en las aplicaciones de secuencias en la actualidad de control y mediciones.

El año de 1799, según Humphery (1778-1829), en un experimento, derritió dos bloques de hielo por medio de un proceso de fricción entre estos elementos. Este trabajo dejó entrever que por primera vez la temperatura o calor es una posible forma de la energía. Antes de esto, se sostenía que la temperatura era un tipo de energía sin peso denominado calórico. Este experimento ha permitido tener otra visión sobre el calor, abriendo camino para la medición tecnológica del calor, que pasó a ser a un proceso industrial como una variable a medir.

Entendiendo el proceso e inicio de su funcionamiento de la mayoría de los sensores tecnológicos industriales, se pueden observar distintos grupos que a continuación se presentan:

Termostato: Son una especie de sistemas de interruptores que combinan mucho el valor de calor o temperatura, global con una especie de histéresis. Por ejemplo, los termostatos.
Termistores: Sistemas de sensor de diseño analógico que se basa en los cambios de resistencia eléctrica de algunos metales o conductores con la conducción de la temperatura.

Termopares: Reduce y fija un flujo de corriente eléctrica en un sistema de un par de metales diferenciados si las dos conexiones se encuentran a temperatura diferenciada.

Pirómetros: Sensores de forma analógica o digitalizada que se utilizan en global para generar formas de temperaturas que se encuentran basadas por radiación térmica que pueden ser expulsados por cuerpos con altas temperatura.

2.2. Tipos de sensores de temperatura

2.2.1. Los termostatos.

Son sistemas de sensores con salida moderada o total que combina con ciento valor de calor. Los más sencillos, o de menor costo, se basan en un sistema de diferencial dilatación de un par de metales y los más modernos o actualizados, son construidos con base a un sensor de diseño analógico y uno o más comparadores con histéresis.

2.2.2. Termo resistencias (RTD).

Se denomina así a los sistemas en que las acciones de control se encuentran en función a la comunicación y la señal de salida. Los procesos de sistema cerrado utilizan una retroalimentación seguida desde un resultado de fin que ajusta las acciones de control de los efectos.

2.2.2.1. Detectores de temperatura resistivos, RTD

Este sistema es uno de los más recientes y comunes que se construye de alambres finos con soporte de materiales que se aíslan, y luego son básicamente encapsulados; luego de esta condición, se incorpora al interior de un tubo metálico que está cerrado en un lado y se tapa o lleva con un compuesto llamado polvo aislador y se cierra sellando con cubierta para evitar que se llene de humedad.

Los componentes que se utilizan para la fabricación de las termo resistencias RTD son básicamente de níquel, platino, cobre, níquel, hierro y tungsteno.
Se aprovecha esta propiedad para construir sondas de temperatura, para lo cual se necesita un material que contenga una característica de coeficiente relativamente constante y que, de un grado de sensibilidad, por otro lado, las sondas de la industria se construyen con base a un material especial como el platino, cuyo valor de coeficiente térmico es 0,00385 ohm/ ohm C. las cuales tienen un valor nominal de 100 amperios a 0 grados con el nombre de Pt100.

Figura 5 – Tipos de termorresistencia (autoría)
El elemento del platino tiene una relevancia en sus procesos de fabricación de los elementos porque poseen un sistema de uniformidad que con la temperatura amplía el rango de operaciones y una elevada estabilidad a largo plazo.

Las termo resistencias de platino pueden medir un rango más elevado y espectro amplio en las temperaturas, con mayor exactitud, y siendo no sencillamente alteradas por el ambiente donde se encuentran y establecer una relación de resistencia y temperatura, siendo lineal y de cualquier insumo o material, excepto el cobre.

La termo resistencia de níquel, no se encuentran en condiciones de calcular la temperatura alta, semejantes a los sensores de material de platino. Existen límites de alcance para los sistemas de termo resistencia que se encuentran aproximadamente de 60 °C y 180 °C.

La termo resistencia de cobre, contiene la mayor correlación entre resistencia y temperatura de todas las termo resistencias, pero a su vez presentan diversas desventajas en un rango de calor entre –200 °C y 150 °C con una bajísima resistencia. Esta condición incide en la necesidad de empelar fibras de alambres finísimos de reducido perímetro.

Ventaja a considerar

Un sistema de termorresistencia puede encontrarse en agua con punto de ebullición y sumergirlo en un contenido de nitrógeno líquido (-194 °C) 50 veces con un margen de error menor a 2 sobre 200 de un grado de temperatura. Su estabilidad típica es de ± 0.5°C por año.

Inconvenientes

En primer lugar, se encuentra el problema de las resistencias del cableado. Como se ha mencionado con anterioridad estos sistemas de resistencia trabaja como conducción de puente. Las distancias del instrumento es la causa más usual de error en sus resistencias de los filamentos de alambre. Se entiende que estos elementos son de cobre, el cual cambia su resistencia con la temperatura, y como se ubican unas serias con la termo resistencia de platino, se corre el riesgo de tener un error que puede ser considerable.

Para compensar estas faltas, las termo resistencias se administran en las modalidades con tres y cuatro conductores como se verá en la siguiente figura.
2.2.3. Termistores.

Es un sistema de sensores

Es un instrumento de sensores que resisten a la temperatura, su función se sostiene en la variabilidad de resistencia que se observa en un semiconductor con calor de temperatura. El concepto de termisor emana de Thermall y Sensitive Resisthor.

Con estos instrumentos llamados termistores, se pueden detectar los cambios muy susceptibles a la temperatura, estos elementos, en cuanto a su fabricación, se usa la combinación de materiales cerámicos y algún tipo de óxido en metal como semiconductor, como por ejemplo, níquel, manganeso, titanio, cobre y hierro.

Señalando los termistores se puede observar un coeficiente de resistencia muy deficiente o algunas veces con alto rendimiento traducidos en positivos.
2.2.3.1. **Tipos de termistores.**

Existen dos tipos de termistor:

NTC (Negative Temperature Coefficient) – coeficiente de temperatura negativo.

PTC (Positive Temperature Coefficient) – coeficiente de temperatura positiva.

![Diagrama de termistor NTC y PTC](image)

Figura 7 – Coeficiente de Temperatura. Fuente: Holman (1999)

El alta de la sensibilidad a la variabilidad de la temperatura puede hacer que los transistores puedan ser adecuados para las mediciones precisas de calor, empleando un espectro amplio para una aplicación de control y compensar en los rangos de 150 °C a 450 °C.

En cuanto a su fijación, se les puede asegurar o estabilizar montando con tornillos de manera roscada en superficies prefabricadas o cementadas. Los alojamientos pueden ser de material como acero inoxidable u otro material, como plástico, aluminio etc.
Figura 8 – Rango de termistores (autoría)

Aplicaciones

El conjunto de aplicaciones de equipo termistor PTC se encuentra determinado por un margen de temperatura:

1. Grado de relación con la resistividad de temperatura
 - Mediciones de niveles de líquido
 - Medición precisa de la temperatura
 - Cambios de medios (líquido – ventilación)

2. Inercia de calor de PTC
 - Retraso de accionar de redes
 - Proteger los impulsos de relaciones de corrientes

3. Índice de una temperatura positiva
 - Compensar relaciones de temperatura de un perfil positivo
 - Los llamados PTC son utilizados con limitantes de fluido de corriente como sobreprotección de una carga excesiva.
2.2.4. Los termopares.

Un equipo de termopar se considera como un par de conductores diferenciados en metal o aleaciones. En uno de los extremos, las uniones en la medición están colocadas en sitios donde se presente la medición del calor. Estos conductores se desvían del área de influencia, se produce entonces una reacción electromotriz que viene a ser la diferenciación de calor entre los dos juntos.

1. Para determinados materiales existe una correlación de incidencia lineal entre las distintas temperaturas y fuerza originada.
2. Para ejercer esta energía, se debe conectar ambos lados fríos que conduce de material de cobre u otro material por el mismo resultado. (Diferentes temperaturas).

Para observar la salida de tensión, y esta sea proporcional a la temperatura en las uniones con temperatura alta, se debe mantener dichas temperaturas de las uniones frías o en todo caso usar una compensación de la forma que darían origen a las diferenciaciones por medio de un circuito cerrado.

2.2.4.1. Tipos de termopares disponibles en el mercado

Podemos tener hasta siete tipos de termopares que tienen designaciones con letras elaboradas por lo general suele ser una NTC. Instrument Society of América (ISA).
<table>
<thead>
<tr>
<th>ANSI Code</th>
<th>Color Coding</th>
<th>Alloy Combination</th>
<th>TC Grad</th>
<th>Rango</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>Iron (magnetic)</td>
<td>Constantan, Copper</td>
<td>346 to 2100°F</td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>Chromel Ni-Cr</td>
<td>Constantan, Copper</td>
<td>-278 to 1372°C</td>
<td>-434 to 2500°F</td>
</tr>
<tr>
<td>T</td>
<td>Chromel Ni-Cr</td>
<td>Constantan, Copper</td>
<td>-578 to 402°C</td>
<td>-354 to 212°F</td>
</tr>
<tr>
<td>E</td>
<td>Chromel Ni-Cr</td>
<td>Constantan, Copper</td>
<td>-378 to 1038°C</td>
<td>-204 to 592°F</td>
</tr>
<tr>
<td>N</td>
<td>OMEGA P Ni-Cr</td>
<td>Constantan, Copper</td>
<td>-278 to 1378°C</td>
<td>-180 to 752°F</td>
</tr>
<tr>
<td>R</td>
<td>Rhodium-Pt</td>
<td>Constantan, Copper</td>
<td>-58 to 1762°C</td>
<td>-32 to 964°F</td>
</tr>
<tr>
<td>S</td>
<td>Rhodium-Pt</td>
<td>Constantan, Copper</td>
<td>-58 to 1762°C</td>
<td>-32 to 964°F</td>
</tr>
<tr>
<td>U</td>
<td>Copper</td>
<td>Constantan, Copper</td>
<td>6 to 1620°C</td>
<td>32 to 3300°F</td>
</tr>
</tbody>
</table>

Figura 9 - Rango de cable
Tabla 1.

Composición, rango de temperaturas, diámetros de alambre apropiado y fuerzas electromotrices (fem) correspondientes a distintos termopares.

<table>
<thead>
<tr>
<th>Tipo</th>
<th>Denominación</th>
<th>Composición</th>
<th>Diametro del alambre</th>
<th>fem en mV(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Platino-rodio 30%</td>
<td>PtRh 30% - PtRh</td>
<td>0...1500 (1800)</td>
<td>0...10.094 (13.585)</td>
</tr>
<tr>
<td>B</td>
<td>Platino-rodio 13</td>
<td>PtRh 13% - Pt</td>
<td>0...1400 (1700)</td>
<td>0...16.035 (20.215)</td>
</tr>
<tr>
<td>R</td>
<td>Platino-rodio 10%</td>
<td>PtRh 10% - Pt</td>
<td>0...1300(1600)</td>
<td>0...13.155 (15.596)</td>
</tr>
<tr>
<td>S</td>
<td>Hierro + constatán</td>
<td>Fe - CuNi</td>
<td>-200 ... 700 (900)</td>
<td>-7.89 ...39.130 (51.875)</td>
</tr>
<tr>
<td>K</td>
<td>Níquel-cromo níquel</td>
<td>NiCr - Ni</td>
<td>0...1000(1300)</td>
<td>7.89 ...33.096 (45.498)</td>
</tr>
<tr>
<td></td>
<td>(Chromel + Alumel)</td>
<td></td>
<td>0 ... 900 (1200)</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Cobre + constatán</td>
<td>Cu - CuNi</td>
<td>(900) 0.5 mm</td>
<td>(20.86) ...9.83...53</td>
</tr>
<tr>
<td>E</td>
<td>Níquel-cromo + constatán</td>
<td>NiCr - CuNi</td>
<td>-200 0... 600</td>
<td>3 mm-8.83</td>
</tr>
</tbody>
</table>

Tabla de Valores Indicando el Rango de Temperatura. Fuente: Holman (1999)
Tipo J (Fe – CuNi). El instrumento conocido como termopar tipo J, es uno de los más conocidos y utilizados en los últimos años en EEUU. Se sabe que el hierro es medio o canal positivo mientras en un conductor de polo negativo se expone a una aleación del 54% de cobre y el 46% de níquel.

Los instrumentos termopares del tipo J, se definen como eficientes para el empleo constante en atmósferas de ambiente oxidante, reductibles y en vacíos, hasta lograr una temperatura de 760°C. Asimismo de los 541 °C por encima el conductor de hierro, se oxida con mayor rapidez, por lo que se hace necesario buscar un alambre de mayor grosor para ampliar la vida útil del producto. Una de las ventajas es su costo accesible.

Las siguientes recomendaciones se exponen para el empleo de los termopares tipo J:

- No debe emplearse en ambientes sulfurosos por encima de una temperatura de 540°C.
- Por sus características de oxidación y su material frágil potencialmente no es admitido para temperaturas menores a 0°C.
- No debe exponerse a ciclos mayores a 760°C, que, en reducidos periodos o intervalos de tiempo, si se necesitaran lecturas precisas por estas temperaturas.

Tipo K. El termopar tipo K es muy conocido en las industrias internacionales el cual tiene una aleación de cromo y aluminio el cual 91% es de níquel y el 9% de cromo, como se sabe que el material de aluminio es una aleación de níquel, silicio y magnesio por este motivo que la norma de la comisión internacional de electrotecnia permite al termopar se le conozca como Ni-Cr, el cual fue patentado en el país de EEUU donde es muy utilizado en las industrias pues gracias a su aleación resiste mayores temperaturas y soporta desde los (-200°C hasta los 1250°C)

En la industria peruana es muy usada en la industria de alimentos como el azúcar que se fabrica en el norte como también en equipos de elaboración de ladrillos y máquinas de inyectoras de plástico.

Siempre que tenemos termopares tipo k se debe de establecer los rangos de temperatura pues para temperaturas con una mínima precisión no son muy requeridas

Tipo T. El termopar de tipo t es muy utilizado también en la industria de metales pues gracias a su estructura principal que es de cobre permite mantenerse por más tiempo al ambiente de la humedad. Pero por solo permitir trabajar a una temperatura de 370°C no permite ingresar en todas las tareas de temperaturas altas.
Las desventajas del termopar para tipo B son su baja tensión de salida y su incapacidad para ser utilizado en atmósferas reductoras (como hidrógeno o monóxido de carbono) y cuando se encuentran presentes vapores metálicos (de plomo o zinc) o no metálicos (de arsénico, fósforo o azufre). Nunca se le debe usar con un tubo de protección metálico o termo vaina (Jiménez, 2009, p.117).

2.2.4.2. Diseño de los termopares.

Las necesidades y solicitudes más relevantes que deben tener o cumplir os termopares son los siguientes:

- Ser desde el punto de vista mecánico, más resistente, robusto y químicamente solvente.
- Debe contener o establecer una salida eléctrica medible y con estabilidad.
- Debe contener un grado de precisión solicitada.
- Debe tener capacidad de respuesta inmediata.
- Considerar la movilidad y transferencia del calor a la atmósfera y también para de ningún modo alterar su lectura.
- Por mucho de los casos se debe tener o poseer asilamiento eléctrico de la masa.
- Debe tener capacidad adquisitiva por el usuario.

Existe una diversidad de diseños de los equipos termopares para múltiples adaptaciones, para su desarrollo usual, los conductores de aquellos que se requiere se unen, por lo general, mediante soldaduras para unir los extremos.

Los conductores tienen la capacidad de usarse sin una protección, o en su defecto, instalarse dentro de tubos de recubrimiento; esos tubos o elementos se emplean por lo general con los termopares elementales, mientras que existen termopares que tienen una capacidad de blindaje con protección metálica, brindando cuidado químico y mecánico sin los tubos en la mayor parte de los casos.

2.2.4.3. Tubos de protección.

En vista que son numerosas las formas aplicativas, los tubos de protección deben ser considerados para su utilización, mantenimiento y trabajos, ya que un elemento a considerar es el medio ambiente, el cual, por sus condiciones y afectaciones, puede desestabilizar y hacer perder su consistencia y características de durabilidad de los tubos. En tal sentido, se enfrenta
a condiciones adversas que pueden limitar algunas características como: porosidad, vibración, presión, montaje costos y remplazos.

Normalmente, el platino requiere de muchos elementos que ayuden a impedir la constante polución de fluidos y muchos gases del metal o también el gas reductor. En base a ello, la parte interior del tubo tiene una capa de durabilidad y protección para su resistencia térmica y mecánica.

2.2.4.4. Respuesta térmica.

La capacidad y tiempo de respuesta será mayor cuando los tubos están protegidos mientras que cuando se encuentre sin protección será menor la respuesta.

Una condición es mantener una mínima capacidad de respuesta la cual consiste en sistematizar o poner sensores al interior del tubo en conexión con el interior del tubo, con una tolerancia estrecha entre los diámetros de sensor en el exterior y el diámetro interno del tubo. Estas condiciones minimizan la capacidad de respuesta por medio de señales que se pueden originar por la temperatura y es detectado.

2.2.4.5. Tubos de protección cerámicos

Se emplean cañerías de porcelana cuando se presentan algunas características como estas:
- El termopar estará arriesgado al golpe inmediato de llama;
- Elementos contaminantes;
- Se debe de recordar que las temperaturas en este tipo solo permiten el diseño para tubos que no superen de los 1230°C.
- Casi siempre los termopares de la composición de este material de platino donde se consigue una cañería cerámica para conseguir amparo hacia el contagio derivado de otros elementos que no se contaminan fácilmente.

Las sustancias que se encuentran ligado a un material de composición de cerámico puede contener ambos tubos, para eso se tiene que mantener muy aislado y preservar la alineación en el censado del material.
2.2.5. Pirómetro.

En la industria tenemos muchas aplicaciones en la cual se incrementa la temperatura, se vuelve muy dificultoso para observar su medición, hoy se utiliza como el elemento de mercurio el cual permite que se pueda registrar la temperatura en modo no tan acelerado y permitir usar para procesos de lazo abierto en todo sistema de control, por eso es la importancia de los pirómetros como elemento de control de la temperatura

Estos pirómetros que se utilizará para la demostración en el proyecto que se desarrollara para la demostración de esta monografía ayudaran a demostrar de la importancia del pirómetro en la carrera de automatización industrial

Base teórica del pirómetro

Los pirómetros son los elementos cuya composición pueden ser diseñados para trabajar en un rango desde los -50C° hasta los 4001c°. Sin duda en este rango las aplicaciones son muy diversas y las ventajas influyen en el tipo de trabajo a escala que se tendrá, en la especialidad que se tiene en esta casa de estudios se debe de incluir la elaboración de sensores de temperatura como el pirómetro así el alumno estará en la capacidad de poder diseñar y seleccionar el tipo de elemento usado para el control para la apertura de algún proceso que se utiliza y observar las señales del pirómetro brinda y poder escalar en un sistema de control de lazo cerrado

Comportamiento de la radiación

Depende de las cualidades del plano del grupo, es tanto el brío que se irradiia absorbe, por modelo, en los posteriores retratos del patrón un plano que refleja la superior porción de la fibra que influye y por lo cantidad absorbe una mínima cuantía de ella, y otra que irradia un pequeño conjunto de brío, suceso, obstáculo interioriza en su generalidad la dosis restante.
Revisando las dos figuras, se puede apreciar como se muestra la radiación desde que parte del emisor inicia y se refleja hasta la parte final. Se puede apreciar que el recetor ingresa la señal el cual será generado y brindará la señal

Existe un área de una superficie oscura que tiene un gran límite, donde existe un cumulo de energía y esta es absorbida desde el exterior y esta da por:

\[W = \sigma T^4 \]
Dónde

Se puede apreciar que la potencia que se va emitir por la determinada área que será calculada entre el área de la potencia y T es la expresión de la temperatura en grados kelvin

Figura 11 – Radiación de energía. Fuente: Holman (1999)
2.2.5.1. **Tipos de pirómetros.**

A. **Pirómetros de radiación**

Estos pirómetros de radiaciones según la utilización se basan en el código de Stefan-Boltzman que menciona que el brío resplandeciente emitido por el plano de una entidad obscurecido, incrementa proporcionalmente a la fracción fuerza de la calentura total del grupo, es concretar. Los pirómetros de refulgencia se destinan a calcular las elevadas temperaturas, por arriba de 1610 °C. Las mediciones pirométricas, precisas y cómodas, se amplían en todo ciclo crecidamente, inclusive en la industria donde las temperaturas llegan a 700°C.

Esquema de pirómetros de irradiación

Los pirómetros de irradiación para usufructo técnico, se establecen de muchas formas. El intermedio de orientar la irradiación que le da puede entre un cristal o un modelo sinuoso; la herramienta suele ser de naturaleza de lámpara asegurada o ajustable en la lámpara, y el dispositivo patente puede ser un escueto termopar. La energía electromotriz se calcula con un voltímetro o con un potenciómetro, con enlace cuadro, cuadro, y supervisor o itinerario, supervisor y organizador (Jiménez, 2009, p.191).

El modelo sinuoso es preferido como moderado para orientar por ambas cuestiones: La apariencia del origen se proyecta equivalentemente conforme en el receptivo de la proyección de frecuencia, siempre que en la aplicación no se reduzca la coloración y la perdida de cristales el cual no permita una correcta medición.

Tenemos elementos llamados gafas y son de cristal o de silicio vítrea acapara del todo una porción enorme de mucha irradiación de longitudes de frecuencia. La irradiación refleja por el modelo, difiere escasamente en distancia de frecuencia, y calza en relación al esquema.
a) Tipo modelo. En la Fig. 12 se observa estructuralmente los rangos de un pirómetro de irradiación actual del ejemplo de modelo.

Figura 12 – Esquema del pirómetro (autoría)

Cuando se trabaja con radiación se tiene que prever la fuente porque se puede apreciar que el silicio de vítrea tiene un emisor el cual a simple vista es reflejado por el espejo B y llevada a un eje focal.

La propagación que camina por lado de C, es proyectada por el modelo rotundo D hacia el receptor E, en que se gráfica un retrato de C. La portada de J se esclarece levemente con óxido de magnesio para emitir una imagen distorsionada bastante luminaria que haga perceptible la escultura del fundamento, al momento que se observa a través de un cristal H poniendo de empuesta de B.

b. **Tipo cristal.** Saliente pirómetro conformado por cristal de pírex, sílicio fluoruro de calcio que reúne la irradiación de la cosa térmica en una fuente termoeléctrica conformada por diversos equipos de Pt - Pt Rd de pequeñas áreas y encima en sucesión. La irradiación está proyectada e influye directamente en las juntas acaloradas de los termopares. La f.e.m. que facilita la fuente termoeléctrica pende de la discrepancia de calenturas entre la alianza acalorada (refulgencia originaria de la cosa)
Conducente) y la alianza fría. De acuerdo a estos procesos, este último, coincide con la vasija del pirómetro, es expresar, con la calentura del medio.

El resarcimiento del presente, contiene a punta, mediante una firmeza de níquel unida en correspondencia con los bornes de unión del pirómetro. Los instrumentos pueden ser de cerámica o natalicio. Los primeros asideros de barra inoxidable de metal son muy duros al calor y al desgaste, y se utiliza calor que no supera ordinariamente los 1100 °C. Permite una contestación a transformaciones de calentura que los instrumentos de tubería se utilizan incluso a 1650 °C. Una dificultad de gran categoría es la elección del concreto del cristal que debe ceder a la regla del carácter concurrente con la gradación de radiaciones emitida:

Aplicaciones: el pirómetro de irradiación se puede encomendar en parte del termoeléctrico en estos siguientes aspectos:

B. Pirómetros ópticos

En el cálculo de calor, con estos pirómetros, se implementa la práctica de una cualidad de la irradiación calurosa: el resplandor. El resplandor de la irradiación en una margen estrechamente reducida de distancias de frecuencia, enfocadas por origen, cuya calentura a calcular, es asimilado observacional mente con el fulgor, en igual venta, de un origen muy regulado.
Distribución de los pirómetros especiales

El pirómetro visual utilizado en la decisión de inmensas formas de calor de fundición del platino, y otros elementos químicos, es por ejemplo, de fibra en el cual el símbolo desaparece.

2.2.6. Termocuplas.

Modo del dispositivo de la calentura crecidamente frecuente empleado industrialmente. Una termocupla realizaron ambas fibras de diferente basto juntos en un excesivo (hueste universalmente). Al emplear calentura en la alianza del material originan una corriente estrechamente reducida (consecuencia Seebeck) de la disposición de las milis volts e incrementa con la calentura. Por modelo, una termocupla "ejemplo
J" está hecha con un enrejado de acero y nuevo de constatan (fusión de metal y nickel).

Al instalar la alianza en diversos materiales a 750 °C, debe surgir en lados 42.2 milívolts, notablemente los termocuplas de la industria se consiguen dentro de una cañería de fleje inoxidable y nuevo (basto) (vaina), de excesivo está la alianza y en el nuevo el postrero automático de fibras, favorito dentro de un arca con marca de aleación (cabezal).

Tipos de termocuplas

Existe una inmensidad de formas de termocuplas, en el listón se aprecian distintas de las crecidas del obstáculo, aproximadamente el 89% de las termocuplas, empleadas motivo del ejemplo J o de la muestra K.

Por ejemplo la de tipo J, se emplean constantemente en la manufactura del flexible adhesivo (extrusión e irrigación) y fusión de materiales como (Zamac, Aluminio) La termocupla K, se utiliza constantemente en derretimiento y espacio de mucho calor, regulados de 1300 °C, por modelo de derretimiento de metal y cocinas de nivel térmicos.

También tenemos en la industria la termocuplas R, S, B se usan exclusivamente en la manufactura siderúrgica (derretimiento de acero).

El ejemplo en un sistema de control son las de tipo T son usadas en la manufactura de alimentos, si se presentan obstáculos son remplazados en esta diligencia por Pt100.

2.3. Ventajas y desventajas de los sensores de cálculo de calor

A modo de sinopsis en la lista 10 se obtienen los pros y contra de los equipos sensores de cálculo enumerado anticipadamente.
<table>
<thead>
<tr>
<th>Elemento sensor</th>
<th>Ventajas</th>
<th>Desventajas</th>
</tr>
</thead>
</table>
| Termómetro bimétálico | a. Menos sujetos a ruptura
b. Lectura en cuadrante | La calibración cambia con el manejo rudo.
El auto calentamiento puede ser un problema. |
| Termorresistencias RTD | a. Precisión del sistema
b. Respuesta rápida
c. Tamaño pequeño | La desviación a largo plazo excede a la del termopar.
Algunos modelos son caros y difíciles de montar. |
| Termistores | a. Tamaño pequeño
b. Respuesta rápida
c. Bueno para rangos estrechos
d. Bajo costo, estable | Amplia respuesta no lineal
No son adecuados para rangos amplios
La alta resistencia hace que el sistema sea susceptible a la inducción de ruido de las líneas de energía. |
| Termopar | a. No hay unión fría
b. Tamaño pequeño, bajo costo, montaje práctico
c. Rango amplio. | La lectura no es tan simple.
El trabajo con los alambres
El fríos puede afectar la calibración. |
| Pirómetro de radiación y óptico | a. No hay contacto físico
b. Rango amplio, respuesta | Más frágil que los otros dispositivos; escala no lineal. |

Cuadro de comparación. *Fuente:* Holman (1999)
2.4. Aplicaciones de los sensores de temperatura

Tabla 3. Aplicación del sensor de frecuencias

<table>
<thead>
<tr>
<th>ELEMENTO SENSOR</th>
<th>APLICACIONES MÁS FRECUENTES.</th>
</tr>
</thead>
</table>
| **Termotostatos** | • Por el tipo de salida que estos presentan se utilizan típicamente en sistemas de climatización y en algunas aplicaciones industriales como interruptores de protección.
• Medición de la temperatura en tuberías de líquidos y gases. |
| **Termoresistencias** | • Control de procesos de forma automatizada.
• Para medición de temperaturas en recintos con atmósferas corrosivas de oxidantes. |
| **RTD** | • Control de temperatura en máquinas industriales.
• Protección térmica de motores eléctricos.
• Proceso de transformación del plástico, vidrio y cerámica. |
| **Termistores** | • Sistemas de control automatizados.
• Industria manufacturera de alimentos.
• Dispositivos de control de la temperatura en maquinaria industrial.
• Medición del nivel de aceite en automóviles.
• En el control del nivel de líquidos.
• En el arranque de motores eléctricos.
• Medición de la temperatura en tuberías de distribución de líquidos y gases.
• Procesos de fabricación como fundición de metales de baja temperatura, fundición de hierro, etc.
• Útiles en atmósferas corrosivas.
• Medición de temperatura en hornos, ductos de aire y cambiadores de calor. |
| **Termopares** | • Fabricación del plástico y objetos de cerámica.
• Sistemas de control automatizados.
• Industria alimentaria.
• Industria química. |
| **Pirómetros** | • Medida de la temperatura en hornos.
• Industria de la producción del acero.
• Industria de la producción del cobre, y en general en cualquier proceso de fundición.
• Industria petroquímica.
• En calderas para medir la temperatura de la llama.
• Medida de la temperatura en procesos de tratamiento térmico de metales, etc. |

Cuadro de aplicaciones. *Fuente: Holman (1999)*
Tabla 4. Dispositivos de medición de temperatura

<table>
<thead>
<tr>
<th>Eléctricos</th>
<th>Mecánico s</th>
<th>Radiación térmica</th>
<th>Varios</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termocuplas</td>
<td>Termómetros de bimetálicos</td>
<td>Pirómetros de radiación</td>
<td>Indicadores de color</td>
</tr>
<tr>
<td>Termorrencias</td>
<td>Sistemas de dilatación</td>
<td>- Total (banda ancha)</td>
<td>Sondas neumáticas</td>
</tr>
<tr>
<td>Resistentes de carbono</td>
<td>Termómetros de vidrio con líquidos</td>
<td>- Óptico</td>
<td>Sensores ultrasónicos</td>
</tr>
<tr>
<td>Cristales de cuarzo</td>
<td></td>
<td>- Pasa banda</td>
<td></td>
</tr>
<tr>
<td>Transistores</td>
<td></td>
<td>- Relación</td>
<td></td>
</tr>
<tr>
<td>Detectores de ruido Johnson</td>
<td></td>
<td></td>
<td>Sensores fluido</td>
</tr>
</tbody>
</table>

Cuadro de dispositivos. *Fuente: Holman (1999)*
Capítulo III

Controladores avanzados de temperatura

3.1. Los PLC y sus módulos controladores de temperatura

Los “PLC” (Programable Logic Controllers, por sus siglas en inglés) son instrumentos eléctricos que puede programar, el proveedor que lo proporciona o especialistas que trabajan en su empresa y de forma individual este equipo con función inmediata, de acuerdo sus necesidades de control. Un PLC es un cerebro eléctrico que facilita diversos dispositivos de máquinas para que provean ejecuciones que normalmente podrían ser graves o muy despacio al trabajar de forma manual.

Por medio de estos instrumentos, la industria ha reducido problemas de sistematización, riesgos y una significativa cuantía de capital en manutención, logrando igualmente acrecentar relativamente la existencia productiva de sus equipos y máquinas aumentando la prontitud de su elaboración.
3.2. La importancia de los PLC’s en la industria

En integridad de la inexperiencia de los programas de PLC, diversas manufacturas podrían ubicarse gastando numeroso capital en secuencias de manutención, conservación y renovación de sus equipos, por lo menos muchos no conocen que están adentro de todos sus equipos. Estos instrumentos, conjuntamente de enseres, fáciles de programar y ayudar notablemente a la transformación fructífera de una producción, garantizando la virtud de su fabricación acabada y desechando el remanente, reduciendo hora, capital y peligros.

Figura 14 - Modelo PLC
3.3. Ventajas del sistema PLC

Con acabado lo que hoy hemos aludido relativo los PLC y lo que aportan a la sistematización de una manufactura, se imaginarán que se trata de una herramienta eléctrica de gran beneficio para las industrias que operan con muchos equipos. Con las grandes ventajas que este método puede ofrecer:

- Estos procesos eléctricos son de gran ventaja, ya que cuenta con una variedad de importantes formas en el mercado, da ventajas parecidas la lógica por medio de cables que puede resultar muy atractivo para cualquier industria.
- Su elaboración es muy fácil, por lo que el tiempo perdido en este proceso es menor respecto a diversos equipos.
- Sin necesidad de modificar los cables o la instalación eléctrica, se deben realizar cambios en el PLC.
- Se emplean diversos elementos para su fabricación, en relación a otros métodos.
- El mantenimiento es muy económico y el tiempo que se requiere para hacerlo.

3.4. El mini PLC Logo V8 Siemens

La interrogación de qué es un Siemens LOGO! Puede que creas que estamos frente a una broma si estás acostumbrado a elaborar con esas personas y observando este artículo. Este ingreso obviamente no es dirigido por usted. Si por el inverso has logrado incluso aquí por un interés por oriente ejemplo de aparatos ya que verdaderamente no sabes carencia relativa ellos o posees conceptos elementales que sí que te sirva de ayuda. ¡Es realidad que en el mundo de la sistematización es dificultoso no frecuentar o por lo menos oír a los Siemens LOGO! va a dar unos datos de salida.

En la industria de Europa por ejemplo se utiliza sensores que son captados como señales de entrada y el logo siemens utiliza la lógica diseña que puede ser por lenguaje de bloques.

Hay demasiada persona que no conoce qué es un Siemens LOGO o que nunca ha administrado un mecánico por reducido que fuera y saber de sus capacidades de lo que sería competente de crear con él: sigue sistematizando su reducida aplicación con lógica de cables diferente a lo que puede brindar instrumentos baratos como el Siemens LOGO 230 RC con el que economizar numeroso capital en cables y horas de trabajo.
Conforme al obstáculo, ¿qué es un Siemens LOGO? Es un dispositivo nomotético, un interventor sistematizado que logra que, a excepción de interposición del hombre, los equipos realicen un quehacer. La dificultad del mensaje quid es significativo, es sistematizado, pero no estructurado. ¡Por cantidad, es absoluto organizar el LOGO! para levantar un trabajo actualmente se afirma, el proceso no contribuye nada. Notablemente procesa de la subsiguiente técnica: al ¡LOGO! le vas a proporcionar da manera de información de ingreso una sucesión de indicadores, las mismas que serán evaluadas a existencia procesadas en el programa.

¿Qué ventajas tiene?

✓ Las virtudes son razones numerosas:
✓ Son de accesible precio.
✓ Por ente programador, es dúctil y variable.
✓ Ahorra numerosos tendidos de cables.
✓ Es numeroso, crecidamente posible, de conservar de poseer que ejecutar cambios.
✓ Puede poseer una cubierta incorporada de control El controlador 6100+ es un producto evolucionado del N6100. El producto se beneficia al tener características más versátiles y funcionalidades fáciles de usar como entradas de punto de ajuste remoto, entradas digitales, módulos de salida enchufables, un menú HMI / operador personalizable, configuración sin jumperless y auto -hardware, y fuente de alimentación de transmisor de 24VDC.

Ha sido diseñado para incorporar mejoras, ahorrar tiempo a los usuarios (hasta un 50% en la configuración del producto), reducir el inventario y prácticamente eliminar la probabilidad de errores del operador.

Los resultados de 6100+ proporcionan un producto que supera las ofertas de la competencia en términos de facilidad de uso, entrega y relación calidad -precio.
Características

- Puntos de ajuste dobles con selección remota opcional
- Los módulos de salida enchufables permiten instalar solo las funciones
- Modos de operador ampliables seleccionables por el usuario
- Tarjetas de salidas plug-and-play seleccionables por el usuario
- Alarmas de proceso y bucle
- Histéresis ajustable
- Entrada de consigna remota analógica opcional
- Controlador SSR 10V opcional
- Software de configuración mejorado para PC con Windows
- HMI mejorada y fácil de usar
- Configuración de entrada sin jumpers
- Reconocimiento de hardware automático
- Velocidades de comunicación más rápidas
 ✓ Comunicación por vía de Ethernet
 ✓ Borne FE (tierra funcional) para conectar la toma de tierra
 ✓ Un LED para señalizar el estado de la comunicación Ethernet.
3.5. LOGO! puede hacerlo

LOGO! otorga alternativas para dispositivos domésticos y de la técnica de disposición como, por regla, iluminando gradas, luminaria externa, toldos, ventanas, terraza etc. Asimismo, puede brindar alternativas para técnicas de compartimientos de colocación, como para la industria, mecanismo y edificación de equipos e instrumentos, por modelo, sistemas de examen de entradas con dispositivos de climatización, tanques para mineral pluvial, etc. LOGO! Asimismo se emplea alternativas de inspección especial en invernadero o invernáculo, para el procesar de señales de verificación y, mediante el nexo de una regla de notificaciones (p. ej. As -i), para la inspección o reparto particular de instrumentos y secuencias. Para las fases de elaboración en sucesión de aparatos pequeños, máquinas y armarios eléctricos; asimismo como en la ciencia de disposición, coexisten aspectos básicos a excepción de división de orden ni display.

3.6. Módulo de ampliación AM2 PT100

El aparato análogo de aumento AM2 PT100 manifiesta ambos ingresos, la conjunto de las mencionadas puede enlazar una termo resistencia Pt100. El dispositivo análogo de ampliación AM2 PT100 convierte la equivalencia de firmeza de una termo resistencia Pt10 unida a la clase de calentura de −50 C a +200 C en pasos de cálculo de 1000. La regla análoga de incremento AM2 PT100 es concurrente en la mayoría de equipos LOGO.

Figura 15 – Logo siemens
Posibilidad de unión de un termostato Pt100. Es viable vincular una termorresistencia Pt100 al dispositivo usando la táctica de nexo de ambos o tercer conector. Si se elige la unión de ambos conectores, deberá colocar en el dispositivo una palanca de cortocircuito entre los bornes M 1+ e IC1 o M2+ e IC2. Ejemplo de enlace no se corregirá la firmeza Óhmica del yeso que causa el transmisor de capacidad. Una potencia de 1 del guía equivale a +2,5C de distracción de medida. Con la pericia de unión de terceto corriente se disminuye la distancia del guía (tenacidad Óhmica) e influye en la consecuencia de capacidad.

3.7. **Controlador de temperatura universal West 610**

West 6100+ es parte de la serie Plus de controladores que dan flexibilidad y facilidad de uso a nuevos niveles.

Figura 16 – Controlador de temperatura West
Capítulo IV

Ejecución del Módulo de Control de Temperaturas

4.1. Materiales usados para el módulo de control de temperatura

Pulsadores eléctricos

1. Normally cerrado
2. Normally abierto

![Figura 17 - Pulsadores eléctricos](image)

Lámparas señalizadoras

3 lámparas señalizadores 24 dc

![Figura 18 - Lámparas señalizadoras](image)
Contactor trifásico

Figura 19 – Contactor clase C, 9 amperios-220v ac

Figura 20 – Plc siemens logo v8 24dc
Figura 21 – Pantalla logo TDE

Figura 22 – Controlador de temperatura universal WEST 6100+
Figura 23 – Controlador de temperatura ON/OFF MH1210W

Figura 24 – Pt1
Capítulo V

Aplicación Didáctica
ESQUEMA DE APRENDIZAJE

INFORMACIÓN GENERAL

ESPECIALIDAD: AUTOMATIZACIÓN INDUSTRIAL
CURSO: CONTROL DE PROCESOS INDUSTRIALES II
GRADUANDO: COPACONDORI QUISPE, EDWIN JHONATAN
NIVEL: SUPERIOR
FECHA: 21/02/2018

ACTIVIDAD DE APRENDIZAJE:

<table>
<thead>
<tr>
<th>ELEMENTO DE CAPACIDAD TERMINAL</th>
<th>LUGAR</th>
<th>HORAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instalar y configurar el controlador de temperatura básico MH1210W</td>
<td>Laboratorio</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Taller</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Aula</td>
<td>automatización</td>
</tr>
</tbody>
</table>

CONTENIDOS

<table>
<thead>
<tr>
<th>PROCEDIMIENTOS</th>
<th>CONCEPTOS</th>
<th>ACTITUDES</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Instalación de controlador de temperatura MH1210W</td>
<td>-Controladores de temperatura, características principales</td>
<td>Participa activamente en la práctica de taller de los controladores de temperatura básico-MH1210W.</td>
</tr>
<tr>
<td>-Programación del controlador de temperatura</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Ejecución del controlador a una temperatura del ambiente</td>
<td>-Concepto de temperatura</td>
<td></td>
</tr>
</tbody>
</table>
SECUENCIA METODOLÓGICA

<table>
<thead>
<tr>
<th>MOMENTOS</th>
<th>ESTRATEGIAS METODOLÓGICAS</th>
<th>METODO</th>
<th>RECURSO</th>
<th>TIEMPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOTIVACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- El docente muestra un ejemplo real sobre el controlador de temperatura.</td>
<td></td>
<td>Proyector Multimedia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- El docente realiza las siguientes preguntas: ¿Es importante el controlar la temperatura en un proceso? ¿Cómo se puede controlar la temperatura?</td>
<td></td>
<td>Video</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- El docente escribe las respuestas en la pizarra e induce al tema: “SISTEMA DE CONTROL DE TEMPERATURA”.</td>
<td></td>
<td>Pizarra</td>
<td></td>
</tr>
<tr>
<td>PROPORCIONAR INFORMACIÓN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Se proporciona la hoja de información de los controladores de temperatura.</td>
<td></td>
<td>Deducción Hoja de información: Proyector Multimedia</td>
<td>20 min</td>
</tr>
<tr>
<td></td>
<td>- El docente explica y expone el tema: “Controladores de temperaturas programable</td>
<td></td>
<td>Inducción Pizarra</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Analítico Mota</td>
<td></td>
</tr>
<tr>
<td>DESARROLLAR PRÁCTICA DIRIGIDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- El docente a través de una dinámica grupal distribuye a los alumnos en grupos.</td>
<td></td>
<td>Experiencia estructurada Guía de laboratorio</td>
<td>10 min</td>
</tr>
<tr>
<td></td>
<td>- Se distribuye la hoja de práctica.</td>
<td></td>
<td>Deductivo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- El docente hace una demostración de la práctica a realizar.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- El docente monitorea constantemente la práctica.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- El coordinador del grupo presenta las conclusiones de la práctica realizada.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESOLUCIÓN DE PROBLEMAS Y TRANSFERENCI A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- El docente absuelve las dudas del tema realizado.</td>
<td></td>
<td>Analítico Hoja de información: Proyector Multimedia</td>
<td>5 min</td>
</tr>
<tr>
<td></td>
<td>- El docente resume significativamente el tema: “Controladores de temperatura programables.</td>
<td></td>
<td>Sintético Hoja de información: Proyector Multimedia</td>
<td></td>
</tr>
<tr>
<td>EVALUACIÓN</td>
<td></td>
<td>Prueba objetiva</td>
<td>Ficha de Fast test</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- El docente aplica una hetero evaluación a los estudiantes</td>
<td></td>
<td></td>
<td>5 min</td>
</tr>
</tbody>
</table>
EVALUACIÓN DE LOS APRENDIZAJES

- **CRITERIO DE EVALUACIÓN:** Utiliza esquemas, diagramas y planos para efectuar la programación de los controladores de temperatura, aplicando las normas de seguridad e higiene industrial.

<table>
<thead>
<tr>
<th>INDICADORES</th>
<th>TÉCNICAS</th>
<th>INSTRUMENTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Realiza la programación de controladores de temperatura programables. Correctamente.</td>
<td>Observación estructurada</td>
<td>Ficha de seguimiento</td>
</tr>
</tbody>
</table>
TEMAS DE CONTROL DE TEMPERATURA

CAPACIDAD: Describir el funcionamiento de los diferentes controladores de temperatura para la industria.

1. Concepto de temperatura

La calentura es una dimensión que calcula el horizonte caliente, el ardor, que un grupo posee. La total substancia en resuelto cambio de complemento (compacto, solución o vapor), que está constituida por partículas que se ubican en incesante vibración. La adición de la corriente de todas las partículas del grupo, se observa como brío calorífico; y la calentura, es la mesura de ese carácter cociente.

1.2. Escalas termométricas

Las escalas termométricas son aquellas que se utilizan para indicar la temperatura tomando como base ciertos puntos de referencia. La temperatura se mide con la ayuda de instrumentos basados en una u otra propiedad de la sustancia que varía con la temperatura. Estos instrumentos están calibrados de acuerdo a la escala de temperatura generalmente aceptada y estas escalas son:
- Escala termométrica Celsius
- Escala termométrica Fahrenheit
- Escala termométrica Réaumur
- Escala termométrica Kelvin.

1.3. Definición de sistemas de control

Un método eficaz puede establecerse siempre a un sujeto que recibe unas ejecuciones exógenas o señales de puerta, y siempre una réplica que son ejecuciones externas son las llamadas dimensiones de evacuación. Las ejecuciones de afuera al método se dividen en ambos grupos, dimensiones de inspección, que se pueden manejar, y perturbaciones relativas las que no es potencial ninguno arquetipo de verificación.

El propósito de un método de vigilancia es lograr, mediante el manejo de las dimensiones de inspección, una dominación referente a las dimensiones de expulsión, de carácter que estas lleguen a unos títulos fijados (señal). Un régimen de inspección excelente debe su existencia competente de lograr su meta obedeciendo los siguientes aspectos:

- Establecer la persistencia y, especialmente, formar fuerte anverso a ensayos que no son comunes.
- Ser tan eficaz como sea potencial, según un juicio preestablecido.
 Normal se considera el oriente como regla, que consiste en el ejercicio de inspección relativo, los indicadores de ingreso sean viables, evitando comportamientos fuertes e irreales.
- Ser expeditamente y agradable de maniobrar en el instante existente con auxilio de una computadora. Siempre existen objetos que tienen la porción de un método de inspección y permiten su manipulación.

Tenemos este caso: en un cierto taller básico se utiliza un fogón como "método integral hogareño de ebullición de alimentos". ¿Cómo hacemos para supervisar la calentura de la cocina para hornear una torta? Primero, encendemos el fogón, y prontamente, giramos la perinola que lo identifica. Con oriente mover, se modifica la inauguración del transistor que regula la cuantía de vapor que llega al ardiente del fogón, y de esta táctica su calentura es fina.
1.4. **Tipos de sistema de control**

La inspección de un método se ejecuta mediante un ligado de insumos hidráulicos, mecánicos y electromagnéticos que, interceptados, recogen información acerca de la maniobra, comparan oriente trabajo con datos previos y, si es forzoso, modifican el sumario para lograr la secuela deseado.

![Diagrama de Sistema de Control](image)

Figura 1— Sistema de control

Los sistemas de control pueden ser de forma manual o Automática

1.4.1. **Sistema de control manual**

Para obtener una respuesta del sistema, interviene el hombre sobre el elemento de control.

- **Características**

 Un controlador manual es aquel que tiene sus operaciones controladas o representadas a mano en el punto de localización del controlador de un sistema.

- **Tipos**

 La función del individuo es, en aquel tiempo, el que participa eternamente relativo al procedimiento (cierra o abre, acciona un pulsador, aprieta el fijador...), para originar cambios en el proceso.
Aplicaciones
Ubicamos dispositivos de inspección manuales, por muestra, en:
- El ardiendo y el terminado de la iluminación en un domicilio. La maniobra de la hornalla de vapor de un fogón.
- El dominio del mineral de un recipiente etc.

1.4.2. Sistema automático
Es muy usado en la industria pues ahorra mucho personal en la producción, también permite un proceso de mayor precisión y acabado

En todo sistema de control existen dispositivos encargados de administrar, ordenar, e implementar órdenes para la señal se puede afirmar de otro sistema de control, con el fin de reducir las probabilidades de fallo y obtener los resultados teóricamente verdaderos. Por lo general, se usan sistemas de control industrial en procesos de producción industriales para controlar equipos o máquinas (Jiménez, 2009, p.191).

1.4.2.1. Sistema de control de lazo abierto
Es aquel método en que alejado actúa el sumario relativo a la señal de ingreso y da como consecuencia una señal de ausencia emancipado al indicador de ingreso, inconveniente basado en la primera. Esto quiere decir que no hay feedback hacia el inspector para que éste pueda concordar el ejercicio de verificación. Es cuando se expresa la señal de escapatoria y no se convierte en señal de ingreso para el control (Jiménez, 2009, p.191).

Ejemplo: Un pozo con una manga de huerto. Mientras que la válvula siga a campo abierto, el mineral fluirá.

1.4.2.2. Sistema de control de lazo cerrado
Modo de los procesos en los que el ejercicio de verificación está en el empleo de la señal de evasiva. Los sistemas de contorno cerrado usan el feedback desde una consecuencia final para concordar la función de inspección, en consecuencia. La verificación en ardid cerrado es forzosa siempre que la señal sea la en un solo sentido: con los consiguientes riesgos que ello pueda ocasionar al trabajador y al proceso.
Sus características son:

- Ser complejos, pero amplios en cantidad de parámetros.
- La salida se compara con la entrada y le afecta para el control del sistema su propiedad de retroalimentación.
- Ser más estable a perturbaciones y variaciones internas

2 Sensores de temperatura

2.1. Fundamentación

Cerca de un 16% de todas las secuencias industriales calculan, indican o supervisan la calentura. De alianza con investigaciones hechas recientemente, el cálculo de calentura crece a un compás del 3,6% por año. La saliente operación tiene el propósito de proporcionar al alumno una trascendencia extensa de la leyenda y crecimiento de esta fase tan significativo del control, de la hipótesis y elementos interpuestos en los trabajos recientemente de cálculo y control. Las áreas de diligencia están siendo ubicadas en subestructura de estufa, cocina, equipos de estancia, edificación de máquinas, asimismo como en la manufactura, en síntesis, se puede apreciar la siguiente tabla.

TABLA 1a: Los sensores de temperatura

<table>
<thead>
<tr>
<th>SENSOR DE TEMPERATURA</th>
<th>TEMP. MÍNIMA</th>
<th>TEMP. MÁXIMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Termocuñas</td>
<td>-200°C a</td>
<td>2800°C</td>
</tr>
<tr>
<td>Sistemas de dilatación(capilares bimetálicos)</td>
<td>-195°C</td>
<td>760°C</td>
</tr>
<tr>
<td>Termo resistencias</td>
<td>-250°C</td>
<td>850°C</td>
</tr>
<tr>
<td>Termistores</td>
<td>-195°C</td>
<td>450°C</td>
</tr>
<tr>
<td>Pirómetros de radiación</td>
<td>-40°C</td>
<td>4000°C</td>
</tr>
</tbody>
</table>
2.2. **Tipos de sensores de temperatura**

2.2.1. **Termostatos**

Se puede afirmar: El termostato forma sensores con escapatoría que conmuta a un innegable importe de calentura. Los más simples se basan en la discrepancia de dilatación de ambos metales y los crecidamente sofisticados se suelen edificar en el asiento de un sensor de ejemplo análogo y unidad o varios de protección. Los formados por una plomada analógica y un método comparado tienen la delantera de existencia, en normal, regulación, y de lograr esgrimir sondas de estrechamente pequeño tamaño (sensores PTC o NTC de semiconductor) que pueden encontrarse en el íntimo de bobinados, máquinas, recintos con ambientes de combustión u otros emplazamientos adonde se requiere que ocupen poca plaza o que no se produzca cimbra automática por acto de un circuito (Jiménez, 2009, p.191).

2.2.2. **Termo resistencias (RTD)**

Estos instrumentos son elementos basados en la iniciación de que el aguante eléctrico de los minerales puros se incrementa con la calentura y, hoy que la firmeza eléctrica se puede calcular con suficiente exactitud, esto otorga un intermedio para calcular la calentura con mucha precisión.

2.2.3. **Termistores**

Es un sensor resistivo de calentura. Su maniobra se fundamentó en el desarrollo de la resistencia que presenta un semiconductor con la calentura. La palabra termistor se origina de Thermall y Sensitive Resistor. Con los elementos termistores se observan cambios estrechamente leves de calentura. Los termistores se fabrican con la mezcla sintetizada de concreta cerámica y alguna variedad de óxidos metálico semiconductor, como níquel, manganeso, cobre u otro mineral.
2.2.3.1. Tipos de termistores

Existen dos tipos de termistor:

- NTC (Negative Temperature Coefficient) – coeficiente de temperatura negativo
- PTC (Positive Temperature Coefficient) – coeficiente de temperatura positivo.

Para contrastar se afirma: “Esta gran sensación de variabilidad de calentura hace que el termistor resulte estrechamente apropiado para mediciones precisas de calentura, utilizándoselo largamente para aplicarse de inspección y resarcimiento en la categoría de 150°C a 450°C. Los ejemplos expuestos están en la categoría de – 100 a 450°C (no en un propio modelo). Los termistores sirven para el cálculo o descubrimiento de calentura, proporción en gases, como en sustancias o sólidos. Al origen de su estrecho y pequeño objeto que se ubica regularmente encima de montajes especiales, que pueden ser sustancias notablemente construidas para posicionarlas y resguardarlas generalmente con regular proceso que sea el intermedio donde tengan que trabajar” (Jiménez, 2009, p.191).

Tipo J (Fe - CuNi). El termopar tipo J, conocido como el termopar hierro - constatan, es el segundo más utilizado en los EEUU. Siempre existe un conductor positivo y es el hierro, mientras que para el conductor negativo se recurre a una aleación de 60 % de cobre y 40 % de níquel (constatan).

Tipo K (NiCr Ni). Por otra parte, tenemos a los de tipo k que son más utilizados en instalaciones de control que casi siempre exceden de los 1000°C, pues cabe señalar que este elemento llega a soportar temperaturas de 1260°C, pero para las pruebas en el laboratorio de automatización se simulara esta temperatura.
1. **Tipo T (Cu - CuNi).** Para Jiménez (2009) afirma “Este termopar es muy útil donde la aplicación se utilice en un lugar de humedad estable, pues gracias a su composición que es mayormente es de cobre permite que no se oxide muy fácilmente, pero la desventaja está en su capacidad de receptor máximo que llega a 370°C” (p.69)

2.2.4.2. Diseño de los termopares

Existen ciertos tipos de requerimientos que se deben de cumplir y a continuación se señalarán.

- Se debe producir una salida eléctrica mensurable, y estable.
- Ser mecánicamente robustos y resistentes químicamente.
- Deben tener la precisión requerida.
- Deben responder con la velocidad necesaria.
- Deben, en algunos casos, estar aislados eléctricamente de masa
- No deben ser muy costosos.

2.2.5. Pirómetro

A régimen de que la calentura de una entidad cambie y llegue de un modo crecidamente dificultoso medirla, actualmente por medios que antes se desarrollaban como los termómetros de mercurio o con sistemas eléctricos como las resistencias detectoras de calentura (RTD’s). Termistores o termopares. Los problemas asociados con el cálculo de calentura elevada por métodos convencionales, motivó los primeros descubrimientos relative pirómetros. Los pirómetros asidero dispositivos que miden la calentura a al través del arranque irradiada por el cuerpo. Según se afirma: “El pirómetro forma instrumentos de cálculo a distancia de la calentura de un sistema; estas medidas a distancia se hacen necesarias si la temperatura a calcular es estrechamente elevada, o si la ordenación está en movimiento” (Jiménez, 2009, p.191).
2.5.1 tipos de pirómetros

A. Pirómetros de radiación

También se puede afirmar: Los pirómetros de irradiación se fundamentan en el estatuto de Stefan - Boltzman que dice que el carácter resplandeciente emitido por el plano de un grupo oscurecido, aumenta proporcionalmente a la fracción fuerza de la calentura absoluta del cuerpo. Los pirómetros de irradiación se destinan a calcular elevadas temperaturas, por arriba de 1600 °C. Las medidas piro métricas, exactas y cómodas, se amplían todo el ciclo crecidamente, incluido para temperaturas comparativamente bajas (Jiménez, 2009, p.191).

B. Pirómetros ópticos

En el cálculo de temperaturas con estos pirómetros se hace uso de una característica de la irradiación térmica: el fulgor. El resplandor de la irradiación en un costado estrecho de longitudes de frecuencia emitidas por un origen, cuya calentura ha de medirse, es asimilado visualmente con el resplandor, en la misma margen, en un principio calibrado.

2.6. Termocuclas

Es un elemento que está elaborado por la alianza de ambos metales distintos que produce un voltaje (consecuencia seebeck) que es puesto de la discrepancia de calentura entre unitario de los extremos denominado "lugar fogoso" o alianza ardiente o de mesura y el nuevo denominado "lugar indiferente" o alianza fría o de referencia. Si se presenta un pendiente de calentura en un mentor automatizado, la supuración de ardor creará un corriente de electrones y con ello se generará un vigor electromotriz (FEM) en el contorno. La dimensión y trayectoria de la FEM serán dependientes de la dimensión y orientación del pendiente de calentura del concreto que conforma al conductor. Calentada la articulación de ambos elementos diferentes, que juntos llegan a formar un circuito cerrado.
HOJA DE PROCESOS

TITULO: SISTEMA DE CONTROL DE TEMPERATURA BÁSICO MH1210W

CAPACIDAD: Instalar y configurar el controlador de temperatura básico MH1210W

FUNDAMENTO TEÓRICO

CONTROL DE TEMPERATURA

Conceptos básicos

Controladores: en todo sistema de control de temperatura se tiene que conocer la aplicación donde se va utilizar el sensor, para ello se debe de tener instrumentos de campo como los pirómetros y equipos de calibración de señales de corriente o voltaje y también dependerá si de control de lazo abierto o lazo cerrado.

Temperatura: Es una posesión mecánica que se refiere a las nociones comunes de fuego o alejamiento del fervor. Es una dimensión referida a la noción común térmica, templado o glacial que puede este mesurar como un termómetro.

Por consiguiente se puede indicar que para una señal de calentura, es un conector con el cual se determina la calentura que se requiere de un ambiente, con oriente terminal se supervisa la calentura, y se reproduce una disposición de cambio de ésta misma, que se hace a través de una inspección móvil o una computadora, en uno y otro control (computadora e inspección móvil), se observa al terminar la calentura real. saliente plan por facilidad y se usa para inspeccionar la calentura de un vaso de mineral, no obstante, tiene otras áreas de función como forma la calentura de una morada, de un estanque de una fábrica de una empresa, que necesita estar acierta calentura, y diversas intervenciones.
ANTECEDENTES

En los trabajos de la persona es ineludible poseer la inspección del círculo que lo rodea, esto implica asimismo la verificación de la calentura; el aparato comunica la calentura en que se encuentra y se maneja ésta según se necesita. Luego, el oriente conector es ventajoso en muchas de estas actividades como forma; poseer la calentura de un calorífero de mineral de una vivienda incluso ejecutar ejercicios de una empotra de elaboración; esta forma de ejemplos simples en los cuales se aplica éste conector, es un obstáculo en las labores que la persona tiene en otras áreas de intervención.

Como actualmente se llama en oriente la operación, por habilidad se usa para regular la calentura de una vasija de mineral, en el bote está un comunicador que es el que se menciona relativa la calentura en que se ubica el elemento; se utiliza un recipiente sólido para encender el mineral, éste recipiente firme se activa, todo ciclo que exista al crecimiento de la calentura del mineral. Los circuitos importantes de levante del conector forman: un sensor de calentura, un recipiente firme, un ADC (crisol análogo al manual), ambos micro controladores (PIC’s) y un ordenador.

MATERIALES, HERRAMIENTAS E INSTRUMENTOS DEL TABLERO DIDÁCTICO

- 1 pantalla logo TDE
- 1 logo Siemens 24v DC (salida a transistor)
- 1módulo ampliación siemens RTD (PT 100)
- 1fuente 24v DC 5A
- 1controlador de temperatura universal (west).
- 1 controlador de temperatura NTC
- 1 terminales hembra RJ45
- 1 ciento bananas hembras
- 50 unidades bananas macho
- 3 pulsadores
- 3 lámparas pilotos
- 2 sockets
- 2 interruptores de alimentación on -off
- 1 dimmer 130w
- Riel tipo DIN
- 1 ciento cintillos de 10 cm
- 1 ciento de porta cintillos
- 4 metros cable vulcanizado trifásico
- 3 metros cable vulcanizado monofásico
- Tablero de metal 20mm de espesor (90cmx70cmx20cm) con soporte y ruedas
- 1 rollo de cable nº 16
- 10 barras de silicona
- 1 ciento de Terminales tipo anillo
- 1 tubo de silicona para vidrio
- 1 sensor termopar tipo k
- 1 sensor PT100
- 2 contactores trifásico

PROCEDIMIENTO

a) Verificar el estado operativo de los materiales e instrumentos a utilizar en la práctica a realizar.

b) Revisar el diagrama de conexión del controlador de temperatura MH1210W
c) Ejecutar el diagrama de conexión

![Diagrama de conexión](image)

d) Configurar el equipo

- Mantener presionada la letra S(set) por 10 segundos
- Mostrará la letra HC
- Volvemos a presionar S(set) el cual podemos escoger la letra H/C
 - H (modulo calentador)
 - C (modulo enfriador)
- Escogemos el modo C (enfriador) presionando S (set)
- ahora ingresamos a la letra D la cual nos muestra la histéresis

Seleccionamos el valor de 0.5
- Luego pasamos a las siglas LS (información del mínimo valor del controlador)

- Luego pasamos a las siglas HS (máximo valor del controlador)
- Comprobar la temperatura deseada
- Configurar los parámetros básicos del controlador universal west
INFORMACIÓN GENERAL

ESPECIALIDAD : AUTOMATIZACIÓN INDUSTRIAL
CURSO : CONTROL DE PROCESOS INDUSTRIALES II
GRADUADO : COPACONDORI QUISPE, EDWIN JHONATAN
NIVEL : SUPERIOR
FECHA : 21/02/2018

HOJA DE PRESUPUESTO

<table>
<thead>
<tr>
<th>Cantidad</th>
<th>DESCRIPCIÓN</th>
<th>P.U</th>
<th>Sub-Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Pantalla logo TDE</td>
<td>550.00</td>
<td>550.00</td>
</tr>
<tr>
<td>1</td>
<td>Logo Siemens 24v DC</td>
<td>450.00</td>
<td>450.00</td>
</tr>
<tr>
<td>1</td>
<td>Módulo de ampliación RTD (PT 100)</td>
<td>390.00</td>
<td>390.00</td>
</tr>
<tr>
<td>1</td>
<td>Fuente 24v DC</td>
<td>70.00</td>
<td>70.00</td>
</tr>
<tr>
<td>1</td>
<td>Controlador de temperatura universal (west)</td>
<td>350.00</td>
<td>350.00</td>
</tr>
<tr>
<td>1</td>
<td>Controlador de temperatura NTC</td>
<td>80.00</td>
<td>80.00</td>
</tr>
<tr>
<td>3</td>
<td>Terminales hembra RJ45</td>
<td>7.00</td>
<td>21.00</td>
</tr>
<tr>
<td>1C</td>
<td>Bananas hembras</td>
<td>30.00</td>
<td>30.00</td>
</tr>
<tr>
<td>50</td>
<td>Bananas macho</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>3</td>
<td>Pulsadores</td>
<td>6.00</td>
<td>18.00</td>
</tr>
<tr>
<td>3</td>
<td>Lámparas pilotos</td>
<td>6.00</td>
<td>18.00</td>
</tr>
<tr>
<td>2</td>
<td>Sockets</td>
<td>2.50</td>
<td>5.00</td>
</tr>
<tr>
<td>2</td>
<td>Interruptores de alimentación</td>
<td>3.50</td>
<td>3.50</td>
</tr>
<tr>
<td>1</td>
<td>Dimmer 130w</td>
<td>20.00</td>
<td>20.00</td>
</tr>
<tr>
<td>1</td>
<td>Riel tipo DIN</td>
<td>10.00</td>
<td>10.00</td>
</tr>
<tr>
<td>1c</td>
<td>Cintillos</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>1c</td>
<td>Porta cintillos</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td>4mts</td>
<td>Cable vulcanizado trifásico</td>
<td>3.00</td>
<td>12.00</td>
</tr>
<tr>
<td>3mts</td>
<td>Cable vulcanizado monofásico</td>
<td>2.50</td>
<td>7.50</td>
</tr>
<tr>
<td>1</td>
<td>Tablero de metal 20mm con soporte y ruedas</td>
<td>350.00</td>
<td>350.00</td>
</tr>
<tr>
<td>12</td>
<td>Tornillos 2 pulgadas</td>
<td>5.00</td>
<td>5.00</td>
</tr>
<tr>
<td></td>
<td>Descripción</td>
<td>Cantidad</td>
<td>Unidad</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>1</td>
<td>Rollo de cable nº 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Barras de silicona</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1c</td>
<td>Terminales</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Tubo de silicona para vidrio</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
INFORMACIÓN GENERAL

ESPECIALIDAD : AUTOMATIZACIÓN INDUSTRIAL
CURSO : CONTROL DE PROCESOS INDUSTRIALES II
GRADUADO : COPACONDORI QUISPE, EDWIN JHONATAN
NIVEL : SUPERIOR
FECHA : 21/02/2018

HOJA DE EVALUACIÓN

En el siguiente bloque de proposiciones, marcar con un aspa (X) la respuesta correcta e indicar en el gráfico lo que corresponda:

1. La temperatura más utilizada en el país es:
 a) Centígrados.
 b) Fahrenheit.
 c) Kelvin.
 d) Rankine.

2. Que controlador de temperatura es más utilizado en la industria plástica.
 a) Controlador de temperatura pt100
 b) Controlador de temperatura universal
 c) Controlador de temperatura NTC
 d) Termostato

3. Cual de los siguientes sensores soporta mayor temperatura
 a) pt100.
 b) Tipo J.
 c) Tipo K.
 d) Pt1000.

4. Con sus propias palabras defina que es un sensor

5. Graficar la curva y características de un sensor PTC
INFORMACIÓN GENERAL

ESPECIALIDAD: AUTOMATIZACIÓN INDUSTRIAL
CURSO: CONTROL DE PROCESOS INDUSTRIALES II
GRADUADO: COPACONDORI QUISPE, EDWIN JHONATAN
NIVEL: SUPERIOR
FECHA: 21/02/2018

HOJA DE EVALUACIÓN

<table>
<thead>
<tr>
<th>N°</th>
<th>Apellidos y nombres</th>
<th>OPERACIÓN AL PROCESO</th>
<th>ACABADOS Y PRECISIÓN</th>
<th>EJECUCIÓN DE TIEMPO</th>
<th>PROMEDIO</th>
<th>ACABADOS Y PR</th>
<th>EJECUCIÓN DE TIEMPO</th>
<th>PROMEDIO</th>
<th>EJ</th>
<th>ACABADOS Y PR</th>
<th>EJECUCIÓN DE TIEMPO</th>
<th>PROMEDIO</th>
<th>EJ</th>
<th>ACABADOS Y PR</th>
<th>EJECUCIÓN DE TIEMPO</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Resumen

Un inspector de calentura es una herramienta que se usa para regular la calentura. El inspector de calentura recibe datos de un sensor de calentura y emite datos interceptados a un dispositivo de inspección, como un calefactor o ventilador. Los sistemas de inspección de calentura están construidos para utilizar en diferentes sensores de gases con aguante de 550Ω y 650Ω. Levante inspección permite conservar invariable la calentura del ligamento del sensor en modo propio. La ordenanza de la calentura permite ejecutar unas medidas crecidamente fiables, completas que no se vean afectadas por las combinaciones de la calentura en círculo. La sensación del sensor será luego la misma para todas las mediciones tomadas. Para inspeccionar adecuadamente la calentura de secuencias, sin que el especialista tenga que involucrarse excesivamente, el uso de comprobación de calentura se fundamenta en un interventor, que recibe datos de un sensor de calentura, como un termopar o RTD. En aquel tiempo, compara el tipo de sensor de entrada (termopar, RTD) e intervalo de temperatura.

1. Tipo de salida requerida (relé electromecánico, SSR, salida analógica)
2. Algoritmo de control necesario (on/off, proporcional, PID)
3. Número y tipo de salidas (calor, frío, alarma, límite)

Existen tres tipos básicos de controladores:
1) On-off
2) Proporcional
3) PI
Recomendaciones

✓ Los sensores de temperatura, antes de conectarlos, deben ser calibrados con un multímetro y un medidor de temperatura.

✓ Cuando se desee trabajar con muchas dimensiones para el control de la temperatura, entonces podemos utilizar múltiples controles de temperatura O reemplazar por un PLC de una gama alta.

✓ Cuando se desee utilizar más sensores, se puede conectar y usar una tarjeta que permita multiplicar las señales.

✓ Para la puesta en marcha del presente proyecto, se recomienda que se utilicen varios sensores, debido a que en diferentes sitios, no se cuente con la temperatura requerida.

✓ Dado el carácter económico de la maqueta de temperatura, cada alumno puede disponer de una y realizar la práctica sin restricciones de material con conectores externos que permitan medir las variables.
Conclusiones

- En la industria donde se requiere la automatización de procesos es recomendable conocer el ambiente de trabajo y la temperatura a utilizar.

- Siempre es necesario de conocer el tipo de control, es decir si esa un control de lazo abierto o es un control de lazo cerrado que por general en la industria de automatización de máquinas es el más usado el control de lazo abierto.

- El sensor tipo J, k y pt 100 es muy útil para hacer mediciones de temperatura, la desventaja del sensor pt100, es que difiere grandemente en costo en relación con los otros sensores.
Referencias

- Instrumentación y control de procesos Lab - Volt (Quebec) Ltda. 1997

Apéndices

Apéndice A: Glosario

- **Automatización**: Aplicación de máquinas o de procedimientos automáticos en la realización de un proceso o en una industria.

- **Módulo**: Es una estructura o bloque de piezas que, en una construcción, se ubican en cantidad a fin de hacerla más sencilla, regular y económica. Todo módulo, por lo tanto, forma parte de un sistema y suele estar conectado de alguna manera con el resto de los componentes.

- **Pirómetro**: Instrumento que sirve para medir temperaturas muy elevadas.

- **Sensor**: Es un dispositivo que está capacitado para detectar acciones o estímulos externos y responder, en consecuencia. Estos aparatos pueden transformar las magnitudes físicas o químicas en magnitudes eléctricas.

- **Temperatura**: Es una magnitud referida a las nociones comunes de calor.

- **Termistores**: Son sensores de temperatura por resistencia. Su funcionamiento se basa en la variación de la resistencia que presenta un semiconductor con la temperatura.

- **Termométricas**: Son aquellas que se utilizan para indicar la temperatura, tomando como base ciertos puntos de referencia. La temperatura se mide con la ayuda de instrumentos basados en una u otra propiedad de la sustancia que varía con la temperatura.

- **Termo tanques**: Es un reservorio que almacena el agua y la mantiene, caliente de forma permanente, por lo que su tamaño es mayor en comparación con un calefón.

- **Termo resistencias**: Es un detector de temperatura resistente. Es decir, un sensor de temperatura que detecta la variación de la resistencia de un determinado conductor en función de la temperatura del ambiente.
Apéndice B: Materiales para el tablero
Apéndice C: Ejecución del módulo didáctico

1. Materiales del tablero de control

2. Tablero de metal 70cm X90cmXcm20

3. Marcando y taladrando los agujeros
4. Colocando las bananas hembras y los materiales
5. Terminado de colocar los materiales

6. Conexión de cables
7. Módulo terminado
Apéndice D: Diapositivas del Sistema de Control de Temperaturas

Presentado por:
COPACANDA QUIÑE, Edwin Jerónimo

Para optar al título profesional de Licenciado en Educación
Especialidad de: Automatización industrial
LIMA – PERÚ 2018

SISTEMA DE CONTROL
DE TEMPERATURA
¿Qué es control?

- Es un mecanismo preventivo y correctivo que permite la oportuna detección y corrección de, ineficiencias o incongruencias.
- Examen u observación cuidadosa que sirve para hacer una comprobación.
- Examen periódico que se hace para comprobar la funcionabilidad.

¿Qué es un sistema de control?

- Puede definirse como un ente que recibe unas acciones externas o variables de entrada, y cuya respuesta a estas acciones externas son las denominadas variables de salida.
- Las acciones externas al sistema se dividen en dos grupos, variables de control, que se pueden manipular, y perturbaciones sobre las que no es posible ningún tipo de control.
Tipos sistema de control?

<table>
<thead>
<tr>
<th>MANUALES</th>
<th>AUTOMATICOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Toda vez que existe la presencia y la intervención de una persona en una acción de controlar y regular el comportamiento del sistema.</td>
<td>• El sistema da respuesta sin que nadie intervenga de manera directa sobre él, excepto en la introducción de condiciones iniciales.</td>
</tr>
<tr>
<td></td>
<td>• Existen 2 tipos:</td>
</tr>
</tbody>
</table>

Lazo Abierto

- Seleccionar ciclo de Lavedo
- Interruptor
- Motor y Bomba De Agua
- Lavadora
- Ropa Limpia
¿Qué es temperatura?

"La temperatura es una magnitud que mide el nivel térmico, el calor que un cuerpo posee".

Toda sustancia en determinado estado (sólido, líquido o gas), está constituida por moléculas que se encuentran en continuo movimiento. La suma de las energías de todas las moléculas del cuerpo se conoce como energía térmica; y la temperatura es la medida de esa energía promedio.
Escalas de termométricas

<table>
<thead>
<tr>
<th>Fahrenheit</th>
<th>Celsius</th>
<th>Kelvin</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>100</td>
<td>373</td>
</tr>
<tr>
<td>180</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>273</td>
</tr>
<tr>
<td>-10</td>
<td>10</td>
<td>273</td>
</tr>
<tr>
<td>-20</td>
<td>20</td>
<td>273</td>
</tr>
<tr>
<td>-30</td>
<td>30</td>
<td>273</td>
</tr>
<tr>
<td>-40</td>
<td>40</td>
<td>273</td>
</tr>
<tr>
<td>-50</td>
<td>50</td>
<td>273</td>
</tr>
<tr>
<td>-60</td>
<td>60</td>
<td>273</td>
</tr>
<tr>
<td>-70</td>
<td>70</td>
<td>273</td>
</tr>
<tr>
<td>-80</td>
<td>80</td>
<td>273</td>
</tr>
<tr>
<td>-90</td>
<td>90</td>
<td>273</td>
</tr>
<tr>
<td>-100</td>
<td>100</td>
<td>273</td>
</tr>
</tbody>
</table>

¿Qué es un sensor?

Es un transductor que detecta objetos o señales que se encuentran cerca del elemento sensor. Existen varios tipos de sensores de proximidad según el principio físico que utilizan. Los más comunes son los interruptores de posición, los detectores capacitivos, los inductivos, los foteléctricos, etc.
Tipos de sensores de temperatura

TERMISTORES
- Se basan en el principio de que la resistencia eléctrica de los metales pura se incrementa con la temperatura y, ya que la resistencia eléctrica se puede medir con bastante precisión, esto proporciona un medio para medir la temperatura con mucha exactitud.
- Un sensor resistivo de temperatura. El funcionamiento se basa en la variación de la resistividad que presenta un semiconductor con la temperatura.
- Con los elementos termistor se pueden detectar cambios muy ligeros de temperatura.

TERMORESISTENCIA
- Son sensores con salida lógico o nada que conmuta a un cierto valor de temperatura.
- Los más simples se basan en la diferencia de dilatación de dos metales y los más sofisticados se pueden construir a base de un sensor de tipo onológico y uno o varios comparadores.

TERMOPARES
- Consiste de un par de conductores de diferentes metales o aleaciones. Uno de los extremos, la junta de medida, está colocada en el lugar donde se ha de medir la temperatura.
- Los dos conductores salen del área de medición y terminan en el otro extremo, la junta de referencia que se mantiene a temperatura constante.

PIROMETRO
- A medida que la temperatura de un cuerpo aumenta se vuelve más difícil medirla ya sea por métodos convencionales como los termómetros de mercurio o con sistemas eléctricos como las resistencias correctoras de temperatura.
- Los pirómetros son dispositivos que miden la temperatura a través de la energía radiada por el cuerpo.

TERMOCUPLAS
- Es el sensor de temperatura más común utilizado industrialmente.
- Una termocupla se hace con dos alambres de distintos materiales unidos en un extremo (soldados generalmente). Por ejemplo, una termocupla tipo J, está hecha con un alambre de hierro y otro de constante (aleación de cobre y nickel). Al colocar la unión de estos metales a 96.8 °C, debe aparecer en los extremos 42.2 mil voltios.
¡Gracias!