UNIVERSIDAD NACIONAL DE EDUCACIÓN

Enrique Guzmán y Valle

“Alma Máter del Magisterio Nacional”

FACULTAD DE CIENCIAS

DEPARTAMENTO ACADÉMICO DE MATEMÁTICA E INFORMÁTICA

TESIS

USO DE LA OFIMÁTICA Y LA RELACIÓN CON EL APRENDIZAJE DE LA CINEMÁTICA, PRIMERA UNIDAD DEL ÁREA DE CIENCIA, TECNOLOGÍA Y AMBIENTE DEL 5TO B DE SECUNDARIA TURNO MAÑANA DE LA I.E. FELIPE HUAMÁN POMA DE AYALA, EN EL PERIODO LECTIVO 2014

PRESENTADA POR:

Panta Cartolin, José Omar

Rodríguez Garay, Luis Alberto

ASESOR:

Mg. Huamaní Escobar William Alberto

Para optar el Título Profesional de Licenciado en Educación

Especialidad: Informática

LIMA – PERÚ

2014
DEDICATORIA:

Este trabajo va dedicado a Dios, a nuestras familias y aquellas personas que de manera desinteresada nos apoyaron en el transcurso de nuestra carrera universitaria, para así poder lograr conseguir nuestros objetivos y metas trazadas.
4.3 TRATAMIENTO ESTADÍSTICO ... 54
4.4 RESULTADOS DE TABLAS Y GRÁFICOS .. 54
 4.4.1 Variable I: Uso de la Ofimática .. 54
 4.4.2 Variable II: Aprendizaje significativo de la Cinemática 57
4.5 Prueba de hipótesis .. 62
 4.5.1 Hipótesis General .. 62
 4.5.2 Hipótesis Específicas ... 67
4.6 Discusiones de resultados .. 78
CONCLUSIONES ... 79
RECOMENDACIONES ... 80
BIBLIOGRAFÍA .. 81
ANEXOS .. 83
INTRODUCCIÓN

Las herramientas ofimáticas permiten idear, crear, manipular, transmitir y almacenar información necesaria en una oficina. Actualmente es fundamental que estas estén conectadas a una red local y/o a Internet.

Desde el concepto de ofimática tomado de Internet, se puede decir que la ofimática se puede utilizar en educación y sobre todo en la administración educativa ya que a través de las herramientas que proporciona se pueden llevar programas de notas de planillas, de inventarios y por supuesto de información y comunicación. Un ejemplo de los últimos son los medios perfectos para mantener al tanto a los padres de familia de la actualidad del colegio por medio de circulares que se envían a través de Internet y además de que llegan a todos, se economiza gran cantidad de papel y así cuidamos el ambiente.

Además, podemos ver como no solamente para la administración educativa es adecuada la herramienta, sino también para aquellos jóvenes que pueden ir aprendiendo de las técnicas y herramientas para poder en un futuro cercano aplicarlas a sus estudios o trabajos.

En la actualidad, la tecnología se ha empezado a configurar como un área específica del saber hacer con un cuerpo de conocimientos propio. Por lo tanto la educación tecnológica exige cambios en el currículo para que nuestros estudiantes logren adquirir sus conocimientos de manera significativa.

Esta investigación consta de cinco capítulos, los cuales está determinado primero por El Problema, donde se establece el planteamiento y formulación del problema, como también los objetivos, justificación y limitaciones de esta investigación. Como segundo capítulo tenemos los antecedentes de la investigación y el marco teórico de las variables encontradas.

En el tercer capítulo se encuentran las hipótesis posibles, variables y subvariables o indicadores de esta investigación. Y en el cuarto capítulo se determinara el tipo y el diseño de la investigación, como también la muestra y población, para luego determinar técnicas e instrumentos de recolección de datos para así procesar y analizar los datos encontrados.

Por último y quinto capítulo se encuentra los aspectos administrativos, la cual está establecido por los recursos humanos, materiales y financieros; por otra parte también se encuentra el cronograma de actividades donde se establece las fechas en las que se realizaran las actividades para la ejecución de esta investigación.

Página 5
1.1 ANTECEDENTES DEL PROBLEMA

En los últimos tiempos los modos de la enseñanza han ido evolucionando, la cual se fundamenta en el uso de las nuevas tecnologías de información y comunicaciones llamadas TICS (fundamentalmente el Internet) la cual está revolucionando el sistema educativo tradicional.

La Ofimática en la actualidad se ha convertido en una herramienta indispensable para los educadores, como también en el campo laboral, empresarial e inclusive para las actividades de la vida diaria.

Las aplicaciones del software que se incluyen en la Ofimática, están orientadas a personas no especializadas en temas informáticos y por ello tienen un amplio ámbito de uso, permiten modernizar los procesos de trabajo y simplificar la forma de acceder, compartir y analizar información.

Lograr la formación y capacitación docente no es tarea fácil, pues una de las principales dificultades a las que se enfrentan los educadores en las tecnologías actuales, es que la mayoría de docentes pertenecen a generaciones que tuvieron que soportar la incursión de las nuevas tecnologías sin conocimiento alguno; por el contrario, los educandos han crecido en un mundo en el cual estas tecnologías ocupan muchos espacios de su entorno más inmediato, son parte de cotidiano vivir.

1.1.1 Antecedentes Nacionales

Miguel Ángel Niño Bazalar (2012) “El aula de Innovación pedagógica y el aprendizaje en el área de ciencias Tecnología y Ambiente en el segundo grado de Secundaria de la I.E. Julio César Escobar de San Juan de Miraflores”. Tesis - Universidad Nacional de Educación “Enrique Guzmán y Valle”.

Las conclusiones de la tesis de Miguel Niño Bazalar son las siguientes:

• Se determinó la relación entre las variables uso de aula de innovación pedagógica y el aprendizaje del área de Ciencia, Tecnología y Ambiente, por lo tanto se afirma que el uso de las aulas de innovación pedagógica se relaciona significativa con el aprendizaje en el área de Ciencia, Tecnología y Ambiente en el segundo grado de Educación Secundaria de la Institución Educativa Julio César Escobar de San Juan de Miraflores, Lima 2012.

• Se determinó la relación entre las variables uso de la Tecnología de la Información y Comunicación y el aprendizaje del área de Ciencia, Tecnología y Ambiente, por la
tanto se afirma que existe relación significativa entre el uso de la Tecnología de la Información y la Comunicación y el aprendizaje en el área de Ciencia, Tecnología y Ambiente en el segundo grado de Educación Secundaria de la Institución Educativa Julio César Escobar de San Juan de Miraflores, Lima 2012.

- Se determinó la relación entre las variables de uso de software educativos y el aprendizaje del área de Ciencia, Tecnología y Ambiente, por lo tanto se afirma que existe relación significativa entre el software educativo y el aprendizaje en el área de Ciencia, Tecnología y Ambiente en el segundo grado de Educación Secundaria de la Institución Educativa Julio Cesar Escobar de San Juan de Miraflores, Lima 2012.

- Se determinó la relación entre las variables uso del internet y el aprendizaje del área de Ciencia, Tecnología y Ambiente, por lo tanto se afirma que existe relación significativa entre el internet y el aprendizaje en el área de Ciencia, Tecnología y Ambiente en el segundo grado de Educación Secundaria de la Institución Educativa Julio Cesar Escobar de San Juan de Miraflores, Lima 2012.

Soledad FERNÁNDEZ (2013) "La ofimática y su relación con las aplicaciones de Internet en los estudiantes de la Institución Educativa Secundaria Jesús Divino Maestro de la UGEL 05 - El Agustino - Lima". Tesis. Lima Universidad Nacional de Educación "Enrique Guzmán y Valle".

Las conclusiones de la tesis de Soledad FERNANDEZ son las siguientes:

- Existe relación significativa entre el nivel de conocimiento de Ofimática y las aplicaciones de Internet en los estudiantes de la Institución Educativa Secundaria Jesús Divino Maestro de la UGEL 05 - El Agustino - Lima.

- Existe una relación significativa entre el nivel de conocimiento de procesadores de textos, hoja de cálculo, presentaciones, base de datos y el uso de aplicaciones de internet en los estudiantes de la Institución Educativa Secundaria Jesús Divino Maestro de la UGEL 05 - El Agustino - Lima.

- El uso de foro, blog, buscadores y webs, correo electrónico, chat y redes sociales, tiene relación significativa con el nivel de conocimiento de ofimática en los estudiantes de la Institución Educativa Secundaria Jesús Divino Maestro de la UGEL 05 - El Agustino – Lima.
• Por lo tanto se concluyó que existe una correlación significativa entre el nivel de conocimiento de ofimática y el uso de las aplicaciones de internet.

Las conclusiones de la tesis de Jhonatan ASALDE son las siguientes:

• Existe relación significativa entre el uso de la plataforma virtual y el aprendizaje del curso “Seminario de Informática” en los alumnos del X ciclo de la Especialidad de Informática de la Facultad de Ciencias de la UNE.

• Existe relación significativa entre el uso de la plataforma virtual y el aprendizaje conceptual del curso “Seminario de Informática” en los alumnos del X ciclo de la Especialidad de Informática de la Facultad de Ciencias de la UNE.

• Existe relación significativa entre el uso de la plataforma virtual y el aprendizaje procedimental del curso “Seminario de Informática” en los alumnos del X ciclo de la Especialidad de Informática de la Facultad de Ciencias de la UNE.

• Existe relación significativa entre el uso de la plataforma virtual y el aprendizaje actitudinal del curso “Seminario de Informática” en los alumnos del X ciclo de la Especialidad de Informática de la Facultad de Ciencias de la UNE.

1.1.2 Antecedentes Internacionales

Las conclusiones de la tesis de Ximena JOJOA son las siguientes:

• El 96% de los docentes encuestados no disponen de los servicios de Internet por la situación geográfica en la que se encuentran las comunidades Awá, alejadas de las zonas rurales donde los docentes prestan sus servicios, como también no poseen un computador personal en su hogar, quienes no utiliza el computador como ayuda al proceso de enseñanza aprendizaje, por la falta de conocimientos en los
programas de Ofimática, los cuales son de mucha importancia en el sistema educativo actual y no existen profesionales capacitados en el tema en cuestión.

- El 71% de los docentes encuestados, manifiesta que no utiliza diariamente una computadora para realizar tareas educativas por razones de que no tienen conocimientos sobre el manejo básico de los programas de Ofimática como son Word, Excel y PowerPoint, lo cual no les permite cumplir a cabalidad actividades relacionadas con la docencia.

- El 79% de los docentes de estas comunidades en la actualidad ya cuentan por lo menos con dos o tres computadores en los Centros Educativos en los que ellos laboran, pero tienen mucha dificultad en acceder a un computador por el desconocimiento en los programas de aplicación de la Ofimática los cuales les permiten realizar diferentes actividades como editar textos, realizar informes, cálculos y presentaciones.

- El 84% de los docentes tiene dificultad al momento de realizar reporte de notas en una hoja de cálculo ya que no manejan las funciones que nos brinda el programa Excel, como también se les hace muy difícil asistir a un taller de capacitación a la ciudad, debido al alto costo para recibir estas capacitaciones como son los sustentos de: alimentación hospedaje, transporte

- De acuerdo a los resultados obtenidos de la investigación de campo se determina que Las Tecnologías de la Información y Comunicación influyen en un alto porcentaje, en el proceso de enseñanza – aprendizaje de las Ciencias Naturales, ya que son usadas tanto en la metodología de enseñanza para el desarrollo del pensamiento del estudiante y como una técnica de aprendizaje por parte de los estudiante, lo que demanda procesos continuos de capacitación, siendo esta, una exigencia en el proceso de formación de los estudiantes, considerando a la tecnología como herramienta transversal de los aprendizajes.
• Se establece que Las Tecnologías de la Información y Comunicación que usa el docente en el proceso de enseñanza – aprendizaje de las Ciencias Naturales son los paquetes informáticos como el office como medio de registro y metodología de la enseñanza, así como para la realización de trabajos de investigación, y el uso de múltiples herramientas tecnológicas para la consecución de una actividad académica, y obtener mejores resultados tanto en su presentación como en la fundamentación teórica científica, lo que se refiere a la herramienta del internet es usado en un bajo porcentaje lo que nos lleva a deducir que esta alternativa no es usada para desarrollar su creatividad.

• Las Tecnologías de la Información y Comunicación que el estudiante usa en su aprendizaje de las Ciencias Naturales se llega a definir que es el office como medio de presentación y exposición de trabajos de investigación, en cambio el internet no se convierte en una herramienta de aprendizaje muy usada debido al poco acceso, lo que no se constituye en una asistencia de primera mano, sin dejar de mencionar los riesgos que devienen de un uso masivo, pero sobre todo sin orientación calificada llegando incluso a la mecanización de los procesos cognitivos de los estudiantes, al encontrar todas las respuestas en la red y no desarrollar su pensamiento para resolver problemas no solo referentes a su aprendizaje, sino sociales, los que la tecnología no lograría solucionar.

• Se concluye que la propuesta educativa de institucionalizar talleres de capacitación es una alternativa viable de acuerdo a los resultados obtenidos, ya que en los tiempos actuales demanda de una permanente inclusión de las TIC’s de manera equitativa en la formación de los seres humanos, la misma que permita a todos los estudiantes acceso en especial al internet, como herramienta de investigación para el desarrollo de trabajos inherentes a su preparación académica, esto precisa de manera urgente la capacitación docente en uso de estas herramientas en el proceso de enseñanza – aprendizaje de las Ciencias Naturales al tiempo que oriente su trabajo hacia el desarrollo del pensamiento creativo e innovador y con la necesidad de generar procesos investigativos con el manejo del internet tanto dentro como fuera del aula.

Después de haber realizado la investigación, hemos concluido con lo siguiente:

- En su mayoría los docentes de la escuela de "Pompeya Fernández Márquez", tienen poco interés en aprender el uso de este software educativo como lo es la suite ofimática Open Office, como recurso didáctico; quizás no lo hacen por el desconocimiento a su importancia afectando de esta manera el rendimiento educativo.

- El empleo de estrategias metodológicas se dan en pocas ocasiones por parte de los docentes, imposibilitando así la secuencia de actividades planificadas y organizadas sistemáticamente en la construcción del conocimiento escolar.

- Los docentes de esta Institución Educativa no están especializados en la área de informática, por lo tanto tiene escasos conocimientos en los nuevos avances tecnológicos.

- Los talleres de capacitación ayudaron a mejorar y aclarar los conocimientos básicos sobre la suite ofimática Open Office.

1.2 BASES TEÓRICAS
1.2.1 USO DE LA OFIMÁTICA
Según Wikipedia (Enciclopedia libre), la ofimática es el conjunto de técnicas, aplicaciones y herramientas informáticas que se utilizan en funciones de oficina para optimizar, automatizar y mejorar los procedimientos o tareas relacionados. Las herramientas ofimáticas permiten idear, crear, manipular, transmitir y almacenar información necesaria en una oficina. Actualmente es fundamental que estas estén conectadas a una red local y/o a internet. Cualquier actividad que pueda hacerse manualmente en una oficina puede ser automatizada o ayudada por herramientas ofimáticas: dictado, mecanografía, archivado, fax, microfilmado, gestión de archivos y documentos, etc. La ofimática comienza a desarrollarse en la década del 70, con la masificación de los equipos de oficina que comienzan a incluir microprocesadores, dejándose de usar métodos y herramientas por otras más modernas. Por ejemplo, se deja la máquina de escribir y se reemplaza por computadoras y sus procesadores de texto e incluso el dictado por voz automatizado. Herramientas y procedimientos ofimáticos:
- Procesamiento de textos
- Hoja de cálculo
• Herramientas de presentación multimedia.
• Base de datos.
• Utilidades: agendas, calculadoras, etc.
• Programas de e-mail, correo de voz, mensajeros.
• Herramientas de reconocimiento de voz.
• Suite o paquete ofimático: paquete de múltiples herramientas ofimáticas como Microsoft Office, Open Office, etc.

1.2.1.1 HISTORIA DE LA OFIMÁTICA

La ofimática o la automatización de la oficina moderna, comienza con la máquina de escribir y con la fotocopiadora, que permitieron mecanizar tareas que antes eran manuales.

Más cerca en el tiempo, la automatización de la oficina también comenzó a incluir el traspaso de información hacia medios electrónicos.

Pero la revolución de la automatización llegó de la mano de las computadoras, en especial de las computadoras personales en 1980.

La ofimática básicamente se originó para la gestión de datos (gracias al poder de cálculo y procesamiento de las computadoras), luego para el almacenamiento de información (dado que la capacidad de almacenamiento crecía y se hacía más barato) y finalmente el intercambio de datos (gracias a las facilidades de las redes, la conexión a internet, etc.).

OFIMÁTICA EN LÍNEA

Este tipo de aplicaciones permiten crear y compartir el trabajo en línea. Los documentos se pueden crear desde cero o importarlos a partir de archivos de texto, presentaciones y hojas de cálculo existentes. Una de las principales aportaciones de estas herramientas es que permiten compartir o editar documentos entre varios usuarios (o simplemente visualizarlos) en tiempo real. Aplicaciones educativas Acceder, editar, formatear, compartir y revisar documentos. Crear contenidos de forma colectiva y colaborativa. Fomentar el trabajo en equipo. Colaborar en proyectos conjuntos de forma no presencial. Editar contenidos de manera simultánea por diferentes usuarios.

La ofimática con red de área local (LAN) permite a los usuarios transmitir datos, correo electrónico e incluso voz por la red. Todas las funciones propias del trabajo en oficina, incluyendo dictados, mecanografía, archivado, copias, fax, télex, microfilmado y gestión de archivos, operación de los teléfonos y la centralita, caen en esta categoría.
La ofimática fue un concepto muy popular en los años 1970 y 1980, cuando los ordenadores de sobremesa se popularizaron.

1.2.1.2 SUITE OFIMÁTICA
La Página Web del Instituto de Enseñanza Secundaria "José M. Pereda" (Santander) concluye que las suites ofimáticas fueron uno de los paquetes de software que primero se utilizaron. Y se les llamó suite, es decir, un conjunto de aplicaciones que pueden funcionar interrelacionadas. Las suites ofimáticas son primordiales en las tareas cotidianas de cualquier oficina, pero por extensión, casi también de cualquier usuario de PC, ya que incluyen programas de escritura, hoja de cálculo, base de datos y herramienta de presentaciones entre otras.

La suite ofimática más difundida todavía es Office de Microsoft, pero no quiere decir que sea la mejor y mucho menos la más recomendable, sobre todo por el precio. Pero no te preocupes, sea la que sea la que tengas instalada, lo importante es que sea compatible con los formatos más extendidos (DOC, XLS, PPT, ODT...), y esto actualmente lo hace cualquier suite ofimática.

SUITES OFIMÁTICAS:
- Microsoft Office
- LibreOffice
- Apache Open Office
- Calligra Suite
- Kingsoft Office
- ThinkFree Office
- OfficeSuite
- iWork de Apple

1.2.1.3 MICROSOFT OFFICE
En Wikipedia (Enciclopedia libre) se determina que Microsoft Office es una suite de oficina que abarca e interrelaciona aplicaciones de escritorio, servidores y servicios para los sistemas operativos Microsoft Windows y Mac OS X. Microsoft Office fue lanzado por Microsoft en 1989 para Apple Macintosh, más tarde seguido por una versión para Windows, en 1990. La primera versión de Office contenía Microsoft Word, Microsoft Excel y Microsoft PowerPoint. Además, una versión "Pro" (profesional) de Office incluía Microsoft Access y Schedule Plus. Con el tiempo, las aplicaciones de Office han crecido sustancialmente y de forma más estrecha con características
compartidas, como un corrector ortográfico común, la integración de datos OLE y el lenguaje de secuencias de comandos de Microsoft, Visual Basic para aplicaciones. Microsoft también posiciona Office como una plataforma de desarrollo para software de línea de negocios, bajo la marca de Office Business Applications (aplicaciones empresariales de Office u OBA por sus siglas en inglés).

De acuerdo con Forrester Research, a Junio de 2009 las diferentes versiones de Microsoft Office son usadas por más del 80% de las empresas alrededor del mundo. Un análisis afirmó que las versiones de Office 2007/Office 2008 ocupaban entonces el 80% de las instalaciones. Actualmente, el paquete ofimático de Microsoft afronta una fuerte competencia por parte OpenOffice.org, LibreOffice, IBM Lotus Symphony, Kingsoft de foxit, Google Docs e iWork.

PROGRAMAS MÁS USADOS:

a. MICROSOFT WORD
Microsoft Word es el procesador de texto de la suite. Word posee una posición dominante en el mercado de los procesadores de texto. Su formato propietario DOC es considerado un estándar de facto, aunque en su versión Word 2007 utiliza un nuevo formato basado en XML llamado .DOCX, pero también tiene la capacidad de guardar y abrir documentos en el formato DOC. Word está también incluido en algunas versiones de Microsoft Works. Está disponible para las plataformas Microsoft Windows y Mac OS. La primera versión de Word, liberada en 1983, fue para el sistema operativo MS-DOS y tuvo la distinción de introducir en el uso del mouse a una gran cantidad de personas. Word 1.0 podía ser comprado con un mouse, aunque era opcional. La siguiente primavera, Apple lanzó el Mac, y Microsoft desarrolló Word para Mac, el cual se convirtió en la aplicación más popular para este sistema. Requería (como todas las aplicaciones para Mac) la utilización de un ratón.

b. MICROSOFT EXCEL
Microsoft Excel es un programa de hoja o planilla de cálculo. Al igual que Microsoft Word, posee actualmente un mercado dominante. Fue originalmente el más fuerte competidor del entonces popular Lotus 1-2-3, y en tercera posición estuvo Quattro Pro;
pero eventualmente Excel se vendió más, se popularizó y se convirtió en el estándar de facto. Está disponible para plataformas Windows y Macintosh.

Extensiones comunes: .xls (Excel 97-2003), .xlsx (Excel 2007-2010)

c. MICROSOFT POWER POINT
Microsoft PowerPoint es un muy popular programa para desarrollar y desplegar presentaciones visuales en entornos Windows y Mac. Es usado para crear diapositivas multimediales, es decir, compuesta por texto, imágenes, sonido, animaciones y vídeos. Office Mobile para Windows Mobile 5.0 y versiones posteriores poseen una versión de PowerPoint llamada PowerPoint Mobile. Esta versión reducida permite incluso agregar vídeos y sonido a las diapositivas.
Extensiones comunes: .ppt, .pps (Powerpoint 97-2003), .pptx, .ppsx (Powerpoint 2007-2010)

d. MICROSOFT OUTLOOK / ENTOURAGE
Artículos principales: Microsoft Outlook y Microsoft Entourage.
Microsoft Outlook (no confundir con Outlook Express) es un administrador de información personal y un complejo cliente de correo electrónico. El reemplazo para Windows Messaging, Microsoft Mail y Schedule+ comenzó en la versión 97 de Office. Incluía un cliente de correo electrónico, un calendario, un administrador de tareas y un directorio de contacto. Aunque históricamente ha estado disponible para Mac, el equivalente más cercano para Mac OS X es Microsoft Entourage, el cual ofrece un conjunto más reducido de funcionalidades.
Extensiones comunes: .msg, .pst (Outlook 97-2003)

e. OTROS COMPONENTES (VERSIÓN PARA WINDOWS)
- Microsoft Access: Edición de bases de datos.
- Microsoft InfoPath: Edición de formularios basados en XML.
- Microsoft OneNote: Software para facilitar la toma de notas caseras o para reuniones, la recopilación de información, y la colaboración multiusuario.
- Microsoft Project: Software de administración de proyectos (no se incluyó en ninguna edición hasta el momento).
- Microsoft Publisher: Diseño de publicaciones y páginas web (autoedición).
- Microsoft SharePoint Workspace: Software P2P dirigida a grupos de trabajo.
• Microsoft Visio: Editor de gráficos vectoriales (no se incluyó en ninguna edición hasta el momento).

• Microsoft Lync: Cliente de comunicaciones orientado para conferencias y reuniones en tiempo real (conocido como Office Communicator de Microsoft en Office 2007, incluido con Professional Plus y Enterprise).

Componentes que ya no forman parte de la familia Microsoft Office:

• Microsoft SharePoint Designer: Editor de páginas Web WYSIWYG orientado a la personalización de aplicaciones de SharePoint. Considerado como uno de los sucesores de Microsoft FrontPage, aparte de Expresión Web.

f. APLICACIONES DE SERVIDOR (MICROSOFT OFFICE SERVER)

• Microsoft SharePoint - Servidor de colaboración. Tiene dos productos derivados:
 ➢ Excel Server
 ➢ InfoPath Forms Services

• Microsoft Lync Server (anteriormente Office Communications Server y Live Communications Server) - Servidor de comunicaciones en tiempo real.

• Microsoft Office Forms Server - Permite a los usuarios utilizar cualquier navegador para acceder y rellenar formularios de InfoPath. Office Forms Server es una instalación de servidor independiente de InfoPath Forms Services.

• Microsoft Office Groove Server - Gestión centralizada de todas las implementaciones de Microsoft Office Groove en la empresa.

• Microsoft Office Performance Point Server - Permite a los clientes monitorear, analizar y planificar su actividad empresarial.

• Microsoft Office Project Portfolio Server - Permite la creación de una cartera de proyectos, incluidos los flujos de trabajo, centralmente organizada.

• Microsoft Office Project Server - Servidor de administración de proyectos web.

g. SERVICIOS WEB

• Office Web Apps - Servicios de aplicaciones web basadas en Microsoft Office para crear y editar documentos online.
 ➢ Office Live
 ➢ Office Live Small Business - Servicios de alojamiento web y herramientas de colaboración online para empresas pequeñas.

• Office Live Workspace - Almacenamiento online y servicio de colaboración para documentos de Office.
- Live Meeting - Servicio de conferencias web.
- Página web de Microsoft Office - Brinda soporte a todos los productos Microsoft Office.
- Microsoft Update - Permite descargar actualizaciones para los productos Office.
- Microsoft Office 365 - Versión de Office basada en la nube, puesta a la venta a principios de 2011.

CICLO DE VIDA DE LOS PRODUCTOS
Desde 2002, Microsoft estableció la directiva de ciclos de vida de productos.
- Versiones anteriores a Office 97 (incluyendo Outlook 97) se encuentran sin soporte.
- Microsoft Office XP: el soporte principal acabó el 11 de julio de 2006. El soporte extendido se terminó el 12 de julio de 2011.
- Microsoft Office 2003: el soporte principal acabó el 13 de enero de 2009, y el soporte extendido finalizó el 14 de enero de 2014.
- Versiones actuales y futuras: el soporte principal será de 5 años después de su lanzamiento, o 2 años después del lanzamiento de la versión siguiente.3 El soporte extendido acabará 5 años desde el término del soporte principal.

VERSIONES DE MICROSOFT OFFICE:
- Microsoft Office 2013
- Microsoft Office 2010
- Microsoft Office 2007
- Microsoft Office 2003
- Microsoft Office XP
- Microsoft Office 2000
- Microsoft Office 97
- Microsoft Office 95

1.2.1.4 OFIMATICA EN LA EDUCACIÓN
Según la Ofimática Educativa (Blog), la ofimática ha sido un impacto en la sociedad de la información en el mundo educativo, esto gracias a los avances científicos y el marco
socioeconómico globalizado, sustentado por las tecnologías de la información y comunicación las cuales han dado como resultado cambios sociales. Dentro de la ofimática institucional se menciona que existe una educación informal donde se comienzan a integrarse las TIC, en el proceso de Enseñanza – Aprendizaje.

Y como resultado de ello el Docente se tiene que ver en la necesidad de capacitarse en las tecnologías, comienza la alfabetización digital, donde el ordenador comienza a hacer acto de presencia dentro de la educación, y las actividades comienzan a ser lúdicas, informativas, comunicativas e instructivas.

Según Carlos Azañero Estrada, dice que hoy en día una persona que no está capacitado para operar una computadora y sus programas es considerada un analfabeto informático.

Ofimática constituye un valioso aporte dentro de las actividades que realiza el hombre. Ayuda a realizar muchas tareas, facilita la edición de textos, realizar cálculos y preparar presentaciones de exposición.

La utilidad está en la reutilización y el compartir información, lo que permite una administración adecuada del conocimiento, pudiendo considerar a la computación como un recurso didáctico.

1.2.2 APRENDIZAJE SIGNIFICATIVO DE LA CINEMÁTICA

1.2.2.1 APRENDIZAJE

Relloso, G. (2007, p 121) "Es el proceso mediante el cual se origina o se modifica una actividad respondiendo a una situación siempre que los cambios no puedan ser atribuidos al crecimiento o al estado temporal del organismo (como la fatiga o bajo el efecto de las drogas)".

El aprendizaje humano consiste en adquirir, procesar, comprender y, finalmente, aplicar una información que nos ha sido «enseñada», es decir, cuando aprendemos nos adaptamos a las exigencias que los contextos nos demandan.

El aprendizaje requiere un cambio relativamente estable de la conducta del individuo. Este cambio es producido tras asociaciones entre estímulo y respuesta.

En el ser humano, la capacidad de aprendizaje ha llegado a constituir un factor que sobrepasa a la habilidad común en las mismas ramas evolutivas, consistente en el cambio conductual en función del entorno dado. De modo que, a través de la continua adquisición de conocimiento, la especie humana ha logrado hasta cierto punto el poder de independizarse de su contexto ecológico e incluso de modificarlo según sus necesidades.

Según esta definición, podemos manifestar tres tipos de aprendizaje:
a. **APRENDIZAJE CONCEPTUAL**

Según los Contenidos Conceptuales (2009), corresponde al área del saber, es decir, los hechos, fenómenos y conceptos que los estudiantes pueden "aprender". Los contenidos pueden transformarse en aprendizaje si se parte de los conocimientos previos que el estudiante posee, que a su vez se interrelacionan con los otros tipos de contenidos.

Durante muchos años constituyeron el fundamento casi exclusivo en el ámbito concreto de la intervención docente. Están conformados por conceptos, principios, leyes, enunciados, teoremas y modelos.

Sin embargo, no basta con obtener información y tener conocimientos acerca de las cosas, hechos y conceptos de una determinada área científica, es preciso además comprenderlos y establecer relaciones significativas con otros conceptos, a través de un proceso de interpretación y tomando en cuenta los conocimientos previos que se poseen.

b. **APRENDIZAJE PROCEDIMENTAL**

Según los Contenidos Procedimentales (2009), constituyen un conjunto de acciones que facilitan el logro de un fin propuesto. El estudiante será el actor principal en la realización de los procedimientos que demandan los contenidos, es decir, desarrollará su capacidad para "saber hacer". En otras palabras contemplan el conocimiento de cómo ejecutar acciones interiorizadas. Estos contenidos abarcan habilidades intelectuales, motrices, destrezas, estrategias y procesos que impliquen una secuencia de acciones. Los procedimientos aparecen en forma secuencial y sistemática. Requieren de reiteración de acciones que llevan a los estudiantes a dominar la técnica o habilidad.

Se clasifican en:

- **Generales**: son comunes a todas las áreas.
 - Procedimientos para la búsqueda de información.
 - Procedimientos para procesar la información obtenida.
 - Ejemplo: análisis, realización de tablas, gráficos, clasificaciones.
 - Procedimientos para la comunicación de información.
 - Ejemplo: elaboración de informes, exposiciones, debates.

- **Algorítmicos**: indican el orden y el número de pasos que han de realizarse para resolver un problema.
 - Ejemplo: copiar, sacar el área de una figura.

- **Heurísticos**: son contextuales, no aplicables de manera automática y siempre de la misma forma.
Ejemplo: interpretación de textos.

c. APRENDIZAJE ACTITUDINAL
Según los Contenidos Actitudinales (2009), éstos constituyen los valores, normas, creencias y actitudes conducentes al equilibrio personal y a la convivencia social. Como se pudo apreciar la actitud es considerada como una propiedad individual que define el comportamiento humano y se relaciona directamente con el ser, están relacionadas con la adquisición de conocimientos y con las experiencias que presenten modelos a partir de los cuales los estudiantes pueden reflexionar. El cambio de actitudes irá apareciendo gradualmente en función de los contenidos, las experiencias significativas y la presencia de recursos didácticos y humanos que favorezcan la elaboración de nuevos conceptos.

Es importante destacar que los tres tipos de contenidos tienen el mismo grado de importancia y deben abordarse en la acción docente de forma integrada.

Los conceptos guardan una estrecha relación con las actitudes y a la inversa.

Un concepto puede ser aprendido de formas muy diversas en función de las actitudes con que se relacionen.

Los conceptos para ser adquiridos necesitan de un procedimiento.

Los procedimientos facilitan el aprendizaje de los conceptos y favorecen el desarrollo de actitudes.

Las actitudes a su vez facilitan la selección de los procedimientos adecuados.

1.2.2.2 Aprendizaje, Enseñanza y Desarrollo
"El hombre (...) no bien nace ya están en pie, junto a su cuna con grandes y fuertes vendas preparadas en las manos, las filosofías, las religiones, las pasiones de los padres, los sistemas políticos. Se viene a la vida como cera y el azar nos vacía en moldes pre hechos (...) El primer trabajo del hombre es reconquistarse." José Martí.

¿CUAL ES EL ESTADO DEL PROBLEMA?
A fines del siglo XX la sociedad dirige marcadamente su atención al papel de la escuela en el desarrollo de las nuevas generaciones, ya que no existe en todos los casos, total correspondencia entre lo “se espera” que esta institución socializadora logre y el "resultado" obtenido.

"La información sobre rendimiento de los alumnos en diversos países de América Latina y los antecedentes sobre altos niveles de repetición, especialmente en los primeros grados, indican que la calidad de la educación (...) podría ser mucho mayor,
en especial para los niños de niveles socioeconómicos más bajos." (Schiefelbein, E; Castillo, G y Colbert, V, Guías de aprendizaje para una escuela deseable)

En muchos de nuestros países existe inconformidad acerca de lo que aprenden los niños, adolescentes y jóvenes en la escuela. En América Latina 8 de cada 10 estudiantes repite algún grado en la primaria y el nivel de eficiencia de la secundaria básica, en muchos casos, es de menos del 50 %. (Ministerio de Educación de Cuba, Informe a la Asamblea Nacional del Poder Popular y la Legislatura)

Estudios recientes apuntan deficiencias en el aprendizaje de las asignaturas de la escuela básica. Los resultados del TIMSS (1998) las señalan en las áreas de Matemática y Ciencias, evidenciando dicho estudio que estos problemas no atañen sólo a los países menos favorecidos por el mercado globalizado neoliberal actual, como lo son las naciones de América Latina. No siempre en todas las naciones se corresponden totalmente los resultados con los "gastos" realizados en la educación.

Los resultados del Primer Estudio Internacional Comparativo realizado por el Laboratorio Latinoamericano de Evaluación de la Calidad de la Educación, en el que participaron 13 países del área, reflejaron que existen "diferencias entre los países, tanto en los niveles de logro, como en la distribución de los rendimientos. (UNESCO, Primer Estudio Internacional Comparativo, Laboratorio Latinoamericano de Evaluación de la Calidad de la Educación, 1998, pág. 12.)

Algunas de las insuficiencias expresadas anteriormente se deben, entre otras causas, a que en la escuela actual persisten elementos negativos de una enseñanza tradicional, (Silvestre 1999, Zilberstein 1999) caracterizada por: Los docentes enfatizan la transmisión y reproducción de los conocimientos.

No siempre se utiliza por los docentes, el diagnóstico con un enfoque integral, generalmente se dirige al resultado.

La actividad se centra en el maestro, el que muchas veces se anticipa a los razonamientos de los alumnos, no permitiendo su reflexión. El contenido se trata sin llegar a los rasgos de esencia.

El control atiende al resultado, no al proceso para llegar al conocimiento o la habilidad.

El centro del acto docente es lo instructivo por encima de lo educativo.

En muchas de las concepciones didácticas actuales no se aportan elementos suficientes para desarrollar la clase con una concepción sistémica, a partir de considerar principios generales. Algunas de las "nuevas tendencias didácticas" niegan el carácter científico de la Pedagogía y como tal de la Didáctica, absolutizan los métodos como los que resolverán el problema, y niegan toda posibilidad de establecer regularidades, leyes o principios que rían el acto didáctico, por lo que la clase generalmente se basa en la improvisación.
A veces, la forma mecánica y repetitiva en que se organiza la enseñanza trae como consecuencia la desmotivación, lo que provoca repetencia y en otros casos abandono escolar. La falta de laboratorios, de trabajo práctico con los estudiantes, las clases que se imparten sólo dentro de los salones, sin vínculo con la naturaleza y el entorno, unida a la insuficiente preparación de algunos docentes, hacen que en la escuela básica muchos contenidos estén desvinculados de la práctica y de la vida cotidiana.

En otros casos, se trata de vincular la enseñanza al entorno, pero se utilizan procedimientos que no permiten que el mismo adquiera un significado para el alumno. Se desaprovechan, en otros momentos, las potencialidades educativas que tienen los miembros de la comunidad en que está ubicada la escuela.

Por otra parte, no existe aún en el accionar práctico de los que orientan y supervisan al maestro, una concepción integradora en el control y asesoramiento con relación a la clase, lo que provoca que se mantenga el enfoque de "asignaturas aisladas". La concepción de las relaciones intermaterias o interdisciplinarias queda en el ámbito de declaratoria, ya que en aquellos países que han estado trabajando en los últimos años por declarar "ejes transversales del currículo", aún son insuficientes las estrategias investigadas para que puedan lograr su propósito.

Muchos de los elementos expuestos en párrafos anteriores son causas de que en los estudiantes exista una tendencia a reproducir conocimientos y a no razonar sus respuestas; que presenten pocas transformaciones en el nivel de su pensamiento; y estén limitados en generalizar y aplicar los conocimientos (Silvestre 1999, Zilberstein 1997, Zubiría 1998). En ellos es limitada la búsqueda de procedimientos para aprender y planificar sus acciones, la mayoría se centran en la respuesta final, sin percatarse del error y con pocas posibilidades para la reflexión crítica y autocritica de lo que aprende, lo que provoca una limitada inclusión consciente en su aprendizaje, al predominar la "tendencia a la ejecución" (Labarrere, 1994).

Ya es hora que los docentes dejemos de preocuparnos, como ocurre en muchos casos, solo por la transmisión de más y más información, sino que nuestra labor debe encaminarse hacia la formación integral de la personalidad de los escolares.

La escuela no puede estar ajena a los nuevos descubrimientos científicos y a lo que estos significan en cuanto a volumen de información y utilidad que reportan a la humanidad, pero tampoco a los cambios económicos y sociales que se producen, que están trayendo como consecuencia transformaciones en los valores que tradicionalmente se formaban en la sociedad.
La enseñanza, el aprendizaje, el desarrollo y la educación son categorías estrechamente vinculadas entre sí, entendiendo esta última en su sentido amplio, como "un conjunto de actividades y prácticas sociales mediante las cuales, y gracias a las cuales, los grupos humanos promueven el desarrollo personal y la socialización de sus miembros y garantizan el funcionamiento de uno de los mecanismos esenciales de la evolución de la especie: la herencia cultural". (Cesar Coll, Algunos Desafíos de la Educación básica en el Umbral del nuevo milenio, página 4)

En su sentido estrecho la educación, del Latín, educare (conducir, guiar, orientar) y educere (hacer salir, extraer, dar a la luz), es el proceso que se organiza, desarrolla y se sistematiza en la institución docente, en función de transmitir los conocimientos y la experiencia histórico social de la humanidad y que debe conducir si se estructura una adecuada enseñanza, a la instrucción, el aprendizaje, el desarrollo y la formación de las alumnas y alumnos. "El fin de la educación no es hacer al hombre nulo, por el desdén o el acomodo imposible al país en que ha de vivir, sino prepararlo para vivir bueno y útil en él." (José Martí, Ideario Pedagógico)

Mediante el proceso del conocimiento humano (reflejo del mundo circundante por la conciencia) el hombre conoce el mundo, para poder actuar y transformarlo.

La enseñanza es el proceso de organización de la actividad cognoscitiva de los escolares, que implica la apropiación por estos de la experiencia histórico-social y la asimilación de la imagen ideal de los objetos, su reflejo o reproducción espiritual, lo que mediatiza toda su actividad y contribuye a su socialización y formación de valores.

La enseñanza cumple funciones instructiva, educativa y desarrolladora, en cuyo proceso debe manifestarse la unidad entre la instrucción y la educación. "La enseñanza amplía las posibilidades del desarrollo, puede acelerarlo y variar no sólo la consecutividad de las etapas del mismo sino también el propio carácter de ellas." (Josefina López, Educación y Desarrollo sensorial)

El aprendizaje es un proceso en el que participa activamente el estudiante, dirigido por el docente, apropiándose el primero de conocimientos, habilidades y capacidades, en comunicación con los otros, en un proceso de socialización que favorece la formación de valores, "es la actividad de asimilación de un proceso especialmente organizado con ese fin, la enseñanza." (Talizina, N, Psicología de la enseñanza)

La enseñanza y el aprendizaje constituyen un proceso, que está regido por leyes concatenadas (pedagógicas, psicológicas, lógicas, filosóficas, entre otras), que interactúan y se condicionan mutuamente. Estas leyes deben conocerse por los docentes, a los efectos que este se desarrolle como un sistema.
La actividad es el modo, específicamente humano, mediante el cual el hombre se relaciona con el mundo. Es un proceso en el cual este reproduce y transforma creadoramente la naturaleza, a partir de la realidad objetiva mediada por la práctica.

En la actividad está presente la abstracción teórica de toda la práctica humana universal: "es modo de existencia, cambio, transformación y desarrollo de la realidad social. Deviene como relación sujeto objeto y está determinada por leyes objetivas" (Pupo, Pupo, R, La actividad como categoría filosófica)

Así por ejemplo, el pensamiento no debe considerarse solo como una de las funciones intelectuales humanas, como diálogo del individuo consigo mismo, sino como la totalidad de las formas de reflejo de la realidad en los diversos modos de la actividad humana, incluyendo la actividad práctica, gnoseológica, valorativa y comunicativa.

La actividad del hombre contribuye a cambiar el mundo exterior, y esto a su vez es condición para su propio auto transformación, que surge de la lucha entre dos contrarios dialécticos, la actividad del hombre sobre el medio que lo rodea y la influencia de este medio sobre lo que ocurre en el interior del individuo.

En el proceso de enseñanza aprendizaje las alumnas y alumnos deben realizar todos los tipos de actividad: práctica, gnoseológica, valorativa y comunicativa, ya que este proceso, al igual que toda actividad humana, tiene como componentes las necesidades, los motivos, una finalidad, condiciones para obtener esa finalidad y componentes (acciones y operaciones).

Si la conciencia es una forma superior de reflejo de la realidad objetiva, atributo solo del hombre, la enseñanza como proceso de organización de la actividad cognoscitiva escolar, permite que los alumnos asimilen el contenido, las propiedades y cualidades de los objetos y fenómenos originados por las generaciones precedentes; así como que comprendan qué son las "cosas", por qué son así y para qué son (su utilidad e importancia).

Es precisamente en la actividad, en la comunicación con el adulto y los coetáneos (procesos de socialización), mediante acciones que en sentido general, pasan de lo externo (material, con objetos), a lo verbal (lenguaje interno e externo) y posteriormente al plano interno (mental), que el alumno llega a apropiarse de la experiencia histórico-social de la humanidad.

El resultado del movimiento general del conocimiento del estudiante se produce de lo concreto (material), a lo abstracto (mental), formándose en este la "imagen ideal" de los contenidos incluidos en la realidad que estudia. Las acciones primeramente en el plano material, luego verbal y finalmente mental de lo que el estudiante conoce mediante la enseñanza (Gaiperin, 1982), facilitan que pueda realizar nuevas acciones.
externas con los mismos contenidos o con otros desconocidos; capacitan para que pueda transformar creadoramente el medio que lo rodea.

1.2.2.3. Aprendizaje Significativo

A lo largo de los años se ha considerado al aprendizaje como sinónimo de cambio de conducta, esto, porque dominó una perspectiva conductista de la labor educativa; sin embargo, se puede afirmar con certeza, que el aprendizaje humano va más allá de un simple cambio de conducta, debido a conducir a un cambio en el significado de la experiencia.

La experiencia humana no solo contiene pensamiento, sino también afectividad y únicamente cuando se consideran en conjunto se capacita al individuo para enriquecer el significado de su experiencia.

Para comprender la labor educativa, es necesario, tener en consideración tres elementos del proceso educativo: los profesores y su manera de enseñar la estructura de los conocimientos que conforman el currículo y el modo en que éste se produce el entramado social en el que se desarrolla el proceso educativo.

El concepto de "aprender a aprender" está íntimamente relacionado con el concepto de potencial de aprendizaje. Él "aprender a aprender" pretende desarrollar las posibilidades de aprendizaje de un individuo, para conseguir por medio de la mejora de las técnicas de destrezas, estrategias y habilidades acercarse al conocimiento.

La teoría del aprendizaje significativo de Ausubel, ofrece en este sentido el marco apropiado para el desarrollo de la labor educativa, así como para el diseño de técnicas educacionales coherentes con tales principios, constituyéndose en un marco teórico que favorecerá dicho proceso.

Para David Ausubel, el aprendizaje significativo es el tipo de aprendizaje en que un estudiante relaciona la información nueva con la que ya posee, reajustando y reconstruyendo ambas informaciones en este proceso. Dicho de otro modo, la estructura de los conocimientos previos condiciona los nuevos conocimientos y experiencias, y éstos, a su vez, modifican y reestructuran aquellos. Este concepto y teoría están enmarcados en el marco de la psicología constructivista.

El aprendizaje significativo se presenta cuando el niño estimula sus conocimientos previos, es decir, que este proceso se da conforme va pasando el tiempo y el pequeño va aprendiendo nuevas cosas. Dicho aprendizaje se efectúa a partir de lo que ya se conoce.
Además el aprendizaje significativo de acuerdo con la práctica docente se manifiesta de diferentes maneras y conforme al contexto del alumno y a los tipos de experiencias que tenga cada niño.

Dentro de las condiciones del aprendizaje significativo, se exponen dos condiciones resultantes de la pericia docente:

- Primero se tiene que elaborar el material necesario para ofrecer una correcta enseñanza y de esta manera obtener un aprendizaje significativo.
- En segundo lugar, se deben estimular los conocimientos previos para que lo anterior nos permita abordar un nuevo aprendizaje.

1.2.2.4 Aprendizaje de las Ciencia Naturales

Olga Delorenzi, Cecilia Blundo (Buenos Aires), la enseñanza y el aprendizaje de las Ciencias Naturales constituyen una preocupación creciente en el ámbito educativo, en particular, por la necesidad de pensar su funcionalidad en la sociedad actual. Historicamente, el área de ciencias ha estado dominado por una visión tradicional que ha ponderado determinadas formas de enseñanza por sobre el aprendizaje significativo. Las investigaciones en la Didáctica de la Ciencias Naturales desarrollan una amplia agenda, en la cual el trabajo con Modelos Didácticos alternativos ocupa un lugar fundamental.

Las conclusiones implican el análisis de la dimensión funcional del modelo, es decir, los procedimientos de acción en el aula, y los resultados de aprendizaje. En la perspectiva de la investigación en educación en ciencias, en la actualidad se considera importante conocer cómo los estudiantes construyen los conceptos científicos, qué tipo de representaciones construyen, qué procesos cognitivos ocurren, y cómo asimilan y comprenden sus significados, ya que esto permitiría conocer los cambios cognitivos o de desarrollo conceptual como una construcción y discriminación de significados y guiar el diseño de modelos de enseñanza que permitan un mejor aprendizaje del conocimiento científico.

Para los fines de la educación en ciencias, entendida como hacer que el alumno comparta significados en el contexto de las ciencias, e interprete el mundo desde el punto de vista de las ciencias, generando nuevas capacidades representacionales que hagan posibles nuevas formas de conocimiento, que se alejen de la inmediatez de los conocimientos intuitivos (Moreira, 1998; Pozo y Gómez Crespo, 1998; Pozo, 2002), un aprendizaje significativo de conceptos científicos claves, como el concepto de campo, es una condición necesaria para la formación científica de los estudiantes, su comprensión de los fenómenos físicos y el conocimiento de principios que sustentan diversas aplicaciones tecnológicas.
APRENDIZAJE DE LA FÍSICA

A. González Arias (La Habana), menciona que la enseñanza de la física sobre la base de la teoría del aprendizaje significativo de Ausubel, específicamente lo que se refiere a la contraposición entre el aprendizaje significativo y el aprendizaje mecánico. En el primer caso el estudiante logra relacionar de forma esencial y no arbitraria lo que trata de aprender con lo que ya conoce. En el segundo sólo se forman asociaciones arbitrarias con la estructura cognitiva del que aprende, y el alumno no puede utilizar el conocimiento de forma novedosa o innovadora. De presentarse irregularidades durante el aprendizaje de la Física (o las Matemáticas), éstas difícilmente podrán ser removidas o subsanadas más adelante; más bien servirán de base para nuevas insuficiencias. Lo anterior es válido no sólo para la especialidad de Física, sino en general para cualquiera de las especialidades asociadas a la "pirámide de conocimientos" de la que la Física forma parte. Esta pirámide incluye la Química, las Ciencias de la Vida y de la Tierra, y prácticamente todas las ingenierías.

La Física forma parte de las llamadas Ciencias Básicas, ya que en mayor o menor grado sirve de base a muchas otras ciencias e ingenierías. En la "pirámide de los conocimientos" ocupa el lugar que se muestra en el esquema adjunto, donde su universo de aplicación es superado solamente por las Matemáticas.

La pirámide representa correctamente la realidad de que, por ejemplo, para comprender lo esencial de un enlace químico, del movimiento de precesión de la tierra en su órbita, de las barreras de potencial en las membranas celulares o de la distribución de esfuerzos en cualquier edificación, por poner sólo un ejemplo de cada caso, resulta indispensable poseer conocimientos de física bastante extensos.

De aquí que la Física, junto a las demás Ciencias Básicas, sea usualmente objeto de especial atención en cualquier sistema educacional.

Sin embargo, y quizás con más frecuencia en los últimos cursos, en el avance del proceso de enseñanza-aprendizaje, hemos encontrado consenso acerca del aumento del número de estudiantes que no logran aprender física lo suficiente. El número de alumnos que necesitan ir a convocatorias extraordinarias de examen aumenta, mientras que los que alcanzan buenas notas en las asignaturas de física disminuye. Usualmente atribuimos esta situación a que muchos de estos estudiantes "no tienen" o "les falta" base para comprender y asimilar determinados temas de estudio. Unas veces se comenta la falta de conocimientos matemáticos; otras, la ausencia de conceptos elementales de física o de química. Y valdría la pena preguntarnos: ¿Hasta dónde son ciertos estos comentarios? ¿Existe verdaderamente esta "falta de conocimientos"? Y, de existir ¿no se podría suplir o subsanar esta falta de alguna forma?
En fin, ¿existe alguna base teórica que permita alcanzar conclusiones sobre este tema?

Según Ausubel, un aprendizaje es significativo cuando los contenidos son relacionados de modo no arbitrario y sustancial (y no al pie de la letra) con lo que el estudiante ya sabe. Por relación sustancial y no arbitraria se debe entender que las ideas se relacionan con algún aspecto existente específicamente relevante de la estructura cognoscitiva del alumno, como una imagen, un símbolo ya significativo, un concepto o una proposición.

El aprendizaje mecánico, contrariamente al aprendizaje significativo, se produce de tal forma que la nueva información es almacenada arbitrariamente, sin interactuar con conocimientos pre-existentes. Un ejemplo de ello sería el simple aprendizaje (memorístico) de fórmulas en física.

En el caso de la Física, donde tanto la dependencia de conocimientos matemáticos previos como el grado de interrelación y concatenación entre sus diversos conceptos y leyes son altísimos, esta conclusión resulta ser extraordinariamente importante. Igualmente, las etapas "saltadas" o incompletas en el proceso docente-educativo serán extremadamente difíciles - por no decir imposibles - de recuperar, ya que el estudiante estará muy ocupado tratando de asimilar los conocimientos correspondientes al nivel de enseñanza presente, y no será capaz por sí solo de determinar cuáles son los conocimientos que le faltan para poder asimilar correctamente los nuevos conocimientos.

Si por algún motivo en determinado nivel educacional se omite la transmisión al estudiante de los conocimientos indispensables para vencer etapas posteriores (programas inadecuados, políticas educativas erróneas), o si por alguna otra oscura razón (paternalismo, fraudes, promocionismo) el estudiante logra vencer niveles educativos sin estar realmente preparado para ello, el porcentaje de conocimientos adquiridos en la forma mecánica descrita por Ausubel se incrementará drásticamente.

A la larga, y aunque siempre hay excepciones, a partir de determinados límites esta situación debe conducir a cualquier estudiante normal a la incapacidad generalizada para adquirir nuevos conocimientos significativos y, finalmente, al fracaso académico.

La posibilidad alterna es la de recibir un graduado con capacidades limitadas, con pobre retención de muchos de sus conocimientos e incapaz de utilizar esos conocimientos de forma novedosa o innovadora, con la correspondiente afectación tanto para la persona individual como para la sociedad en su conjunto. Esto es válido no sólo para la especialidad de Física, sino en general para cualquiera de las especialidades asociadas a la "pirámide de conocimientos" mencionada anteriormente.
En resumen, en respuesta a las preguntas planteadas al inicio, la teoría del aprendizaje significativo de Ausubel conduce a la conclusión de que resulta trascendental evitar al máximo, en todos los niveles de enseñanza, el aprendizaje mecánico y las posibles irregularidades que pudieran presentarse durante los cursos de la Física (y Matemáticas).

1.2.2.5 CINEMÁTICA
Según la página web Wikipedia (enciclopedia libre), la cinemática (del griego kineo, movimiento) es la rama de la física que estudia las leyes del movimiento de los cuerpos sin considerar las causas que lo originan (las fuerzas) y se limita, esencialmente, al estudio de la trayectoria en función del tiempo. La aceleración es el ritmo con el que cambia la velocidad. La velocidad y la aceleración son las dos principales magnitudes que describen cómo cambia la posición en función del tiempo.

Elementos básicos de la cinemática
Los elementos básicos de la cinemática son el espacio, el tiempo y un móvil. En la mecánica clásica se admite la existencia de un espacio absoluto, es decir, un espacio anterior a todos los objetos materiales e independientes de la existencia de estos. Este espacio es el escenario donde ocurren todos los fenómenos físicos, y se supone que todas las leyes de la física se cumplen rigurosamente en todas las regiones del mismo. El espacio físico se representa en la mecánica clásica mediante un espacio euclidiano. Análogamente, la mecánica clásica admite la existencia de un tiempo absoluto que transcurre del mismo modo en todas las regiones del Universo y que es independiente de la existencia de los objetos materiales y de la ocurrencia de los fenómenos físicos. El móvil más simple que se puede considerar es el punto material o partícula; cuando en la cinemática se estudia este caso particular de móvil, se denomina cinemática de la partícula, y cuando el móvil bajo estudio es un cuerpo rígido se lo puede considerar un sistema de partículas y hacer extensivos análogos conceptos; en este caso se le denomina cinemática del sólido rígido o del cuerpo rígido.

Fundamento de la cinemática clásica
La cinemática trata del estudio del movimiento de los cuerpos en general y, en particular, el caso simplificado del movimiento de un punto material, más no estudia por qué se mueven los cuerpos. Para sistemas de muchas partículas, por ejemplo los fluidos, las leyes de movimiento se estudian en la mecánica de fluidos.
El movimiento trazado por una partícula lo mide un observador respecto a un sistema de referencia. Desde el punto de vista matemático, la cinemática expresa cómo varían las coordenadas de posición de la partícula (o partículas) en función del tiempo. La función matemática que describe la trayectoria recorrida por el cuerpo (o partícula) depende de la velocidad (la rapidez con la que cambia de posición un móvil) y de la aceleración (variación de la velocidad respecto del tiempo).

El movimiento de una partícula (o cuerpo rígido) se puede describir según los valores de velocidad y aceleración, que son magnitudes vectoriales:

- Si la aceleración es nula, da lugar a un movimiento rectilíneo uniforme y la velocidad permanece constante a lo largo del tiempo.
- Si la aceleración es constante con igual dirección que la velocidad, da lugar al movimiento rectilíneo uniformemente acelerado y la velocidad variará a lo largo del tiempo.
- Si la aceleración es constante con dirección perpendicular a la velocidad, da lugar al movimiento circular uniforme, donde el módulo de la velocidad es constante, cambiando su dirección con el tiempo.
- Cuando la aceleración es constante y está en el mismo plano que la velocidad y la trayectoria, tiene lugar el movimiento parabólico, donde la componente de la velocidad en la dirección de la aceleración se comporta como un movimiento rectilíneo uniformemente acelerado, y la componente perpendicular se comporta como un movimiento rectilíneo uniforme, y se genera una trayectoria parabólica al componer ambas.
- Cuando la aceleración es constante pero no está en el mismo plano que la velocidad y la trayectoria, se observa el efecto de Coriolis.
- En el movimiento armónico simple se tiene un movimiento periódico de vaivén, como el del péndulo, en el cual un cuerpo oscila a un lado y a otro desde la posición de equilibrio en una dirección determinada y en intervalos iguales de tiempo. La aceleración y la velocidad son funciones, en este caso, sinusoidales del tiempo.

Al considerar el movimiento de traslación de un cuerpo extenso, en el caso de ser rígido, conociendo como se mueve una de las partículas, se deduce como se mueven las demás. Así, basta describir el movimiento de una partícula puntual, como por ejemplo el centro de masa del cuerpo, para especificar el movimiento de todo el cuerpo. En la descripción del movimiento de rotación hay que considerar el eje de rotación respecto del cual rota el cuerpo y la distribución de partículas respecto al eje de giro. El estudio del movimiento de rotación de un sólido rígido suele incluirse en la temática de la mecánica del sólido rígido, por ser más complicado. Un movimiento
interesante es el de una peonza, que al girar puede tener un movimiento de precesión y de nutación.

Cuando un cuerpo posee varios movimientos simultáneamente, como por ejemplo uno de traslación y otro de rotación, se puede estudiar cada uno por separado en el sistema de referencia que sea apropiado para cada uno, y luego, superponer los movimientos.

a. Movimiento Rectilíneo Uniforme

Para la página web www.Fisicalab.com, el movimiento rectilíneo uniforme (M.R.U.), es aquel con velocidad constante y cuya trayectoria es una línea recta. Un ejemplo claro son las puertas correderas de un ascensor, generalmente se abren y cierran en línea recta y siempre a la misma velocidad.

Observa que cuando afirmamos que la velocidad es constante estamos afirmando que no cambia ni su valor (también conocido como módulo, rapidez o celeridad) ni la dirección del movimiento.

Un movimiento rectilíneo uniforme (M.R.U.) es aquel que tiene su velocidad constante y su trayectoria es una línea recta. Esto implica que:

- El espacio recorrido es igual que el desplazamiento.
- En tiempos iguales se recorren distancias iguales.
- La celeridad o rapidez es siempre constante y coincide con el módulo de la velocidad.

Velocidad

En los M.R.U. la velocidad del cuerpo es constante y por tanto igual a la velocidad inicial. Su unidad en el Sistema Internacional (S.I.) es el metro por segundo (m/s).

\[v = v_0 = \text{cte} \]

Dónde:

- \(v \) es la velocidad.
• v_0 es la velocidad inicial

\[v(t) = v_0 + at \]

Posición

Su unidad en el Sistema Internacional (S.I.) es el metro (m) y se obtiene por medio de la siguiente expresión:

\[x = x_0 + v_0 \cdot t \]

Dónde:
- x_0 es la posición inicial.
- v_0 es la velocidad que tiene el cuerpo a lo largo del movimiento.
- t es el intervalo de tiempo durante el cual se mueve el cuerpo.

Observa lo que t representa en la ecuación de posición: El intervalo de tiempo durante el cual se mueve el cuerpo. Dicho intervalo a veces es representado por t y otras por Δt. En cualquiera de los casos, $t=\Delta t = t_f - t_i$ siendo t_f y t_i los instantes de tiempo inicial y final respectivamente del movimiento que estamos estudiando.

b. Movimiento Rectilíneo Uniformemente Acelerado

movimiento rectilíneo uniformemente variado (M.R.U.V.). En este apartado vamos a estudiar las ecuaciones y las gráficas que definen a este movimiento.

Velocidad

Su unidad en el Sistema Internacional (S.I.) es el metro por segundo (m/s). Cambia de manera uniforme y se obtiene por medio de la siguiente expresión:

\[v = v_0 + at \]

Dónde:
- \(v_0 \) es la velocidad inicial.
- \(a \) es la aceleración que tiene el cuerpo.
- \(t \) es el intervalo de tiempo en el que se estudia el movimiento.

Posición

Su unidad en el Sistema Internacional (S.I.) es el metro por segundo (m/s) y se calcula mediante la siguiente expresión:

\[x = x_0 + v_0 t + \frac{1}{2} at^2 \]

Donde:
- \(x_0 \) es la posición inicial.
- \(v_0 \) es la velocidad inicial.
• a es la aceleración.
• t es el intervalo de tiempo en el que se estudia el movimiento.

Gráficamente se trata de una parábola donde \(x_0 \) representa la posición inicial del cuerpo y a la aceleración del mismo.

1.3 DEFINICIÓN DE TÉRMINOS BÁSICOS

• Aprendizaje significativo: Es cuando una nueva información se conecta con un concepto relevante preexistente en la estructura cognitiva.

• Barra De Herramientas: Permite alojar comandos en la parte superior de las herramientas ofimáticas (Word, Excel, Power Point).

• Celda: Es la interpretación de una fila y una columna, un celda puede contener textos numéricos, fecha, instrucciones, funciones y otro sector.

• Diapositiva: Las diapositivas de Power Point son cada uno de los elementos que constituyen la presentación y cada una de ellas podría identificarse con una lámina o página.

• Física: Es la ciencia natural que estudia las propiedades y el comportamiento de la energía y la materia (como también cualquier cambio en ella que no altere la naturaleza de la misma), así como al tiempo, el espacio y las interacciones de estos cuatro conceptos entre sí.

• Hipervínculo: un hipervínculo es una conexión entre dos diapositivas de la misma presentación.

• Informática Educativa: Es un campo que emerge de la inter-disciplina que se da entre la Informática y la Educación para dar solución a tres problemas básicos:
 ➢ Aplicar Informática en Educación
 ➢ Aplicar Educación en Informática y
 ➢ Asegurar el desarrollo del propio campo.

• Microsoft Excel: Software que permite crear tablas, y calcular y analizar datos.
• **Microsoft Office**: Es una suite de oficina (ofimática) que abarca e interrelaciona aplicaciones de escritorio, servidores y servicios para los sistemas operativos Microsoft Windows y Mac OS X.

• **Microsoft Power Point**: Software de presentación de multimedia.

• **Microsoft Word**: Software destinado para el procesamiento de textos.

• **Ofimática**: Conjunto de técnicas, aplicaciones y herramientas informáticas que se utilizan en funciones de oficina para optimizar, automatizar y mejorar los procedimientos o tareas relacionadas.

• **Suite Ofimática**: Es una recopilación de aplicaciones, las cuales son utilizadas en oficinas y sirve para diferentes funciones como crear, modificar, organizar, escanear, imprimir, etc. Archivos y documentos.

• **TIC**: Las tecnologías de la información y la comunicación (TIC o bien NTIC para nuevas tecnologías de la información y de la comunicación) agrupan los elementos y las técnicas usadas en el tratamiento y la transmisión de la información, principalmente la informática, Internet y las telecomunicaciones.

• **Transición**: Las transiciones de diapositivas son efectos de tipo animación que se producen en la vista Presentación con diapositivas, cuando pasa de una diapositiva a la siguiente.

• **WordArt**: WordArt es una característica que viene implementada en Word, Excel, PowerPoint y Publisher de Microsoft Office desde hace bastantes versiones, que permite diseñar diferentes estilos de texto con efectos especiales, texturas, sombras.
CAPITULO II: PLANTEAMIENTO DEL PROBLEMA

2.1 DETERMINACIÓN DEL PROBLEMA
La aplicación de la Ofimática en el ámbito de educación es una tarea que resulta muy provechosa. Existen multitud de opciones de gran utilidad que son desconocidos incluso para un docente, las cuales se considera avanzada.
La dificultad de la aplicación del uso de la ofimática en los estudiantes del 5to B de la Institución Educativa “Felipe Huamán Poma de Ayala” y el aprendizaje de la Cinemática, primera unidad del Ciencia, Tecnología y Ambiente es diversa, tenemos por ejemplo:
• El poco conocimiento de los beneficios y manejo de las herramientas ofimáticas para resolver problemas y/o ejercicios de Cinemática
• Un laboratorio de cómputo no implementado con el software y hardware adecuado para la aplicación de las herramientas ofimáticas.
• Falta de capacitación del docente, en el tema de uso de las herramientas ofimáticas.
Es por ello que al preguntarnos: ¿Estamos realizando una adecuada formación académica mediante la Informática a los alumnos de nuestros Instituciones Educativas?, ¿Podemos mejorar el método de evaluación de las áreas, por medio de la Ofimática?, ¿Podemos implementar talleres en las aulas, referente a Microsoft Office? Estas preguntas necesitan ser explicadas en forma satisfactoria y con alternativas eficaces.
Viendo la necesidad de mejorar el aprendizaje de los estudiantes de secundaria turno mañana en Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente y a la vanguardia de las nuevas tecnologías, se observa el aprendizaje de los estudiantes del 5to B de Secundaria turno mañana de la I.E. N° “Felipe Huamán Poma de Ayala”, en el periodo 2014 y su desempeño mediante la Ofimática (Microsoft Office).

2.2 FORMULACIÓN DEL PROBLEMA
2.2.1 Problema General
¿Cuál es la relación que existe entre el uso de la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014?
2.2.2 Problema Específicos

a. ¿Cuál es la relación que existe entre el uso de la Ofimática y el aprendizaje conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014?

b. ¿Cuál es la relación que existe entre el uso de la Ofimática y el aprendizaje procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014?

c. ¿Cuál es la relación que existe entre el uso de la Ofimática y el aprendizaje actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014?

2.3 JUSTIFICACIÓN DEL PROBLEMA

La Educación Secundaria presenta cambios en cuanto al uso de nuevas herramientas tecnológicas que inducen al aprendizaje, por lo cual el estudiante debe aprender a adaptarse a ellos haciéndolo un proceso natural, permanente y continuo.

En nuestro caso específico el uso de la Ofimática es un recurso pedagógico que adoptaremos oportunamente y por lo tanto es de manera justificable su utilización en los estudiantes de Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Al nivel teórico, nos permitirá conocer el tipo de relación que existe (si lo hubiera) entre la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, la cual se obtendrá mediante el análisis de resultados de datos para cada una de las variables y sus componentes.

A nivel práctico y pedagógico los resultados del estudio permitirán a los docentes realizar los reajustes necesarios para implementar e innovar talleres referentes a la Ofimática, los cuales beneficiara a los estudiantes en el aprendizaje del curso de Cinemática.

En el Perú, desde el año 2002 se viene realizando la integración de las TICS en la educación básica en las instituciones educativas públicas, habiéndose iniciado con el
Proyecto Huascarán y actualmente a través de la Dirección de Tecnologías Educativas del Ministerio de Educación. El objetivo de la integración de las TICS es que los estudiantes de educación desarrollen capacidades TICS en concordancia con los estándares internacionales y las políticas educativas y logren aprendizajes significativos que les permitan alcanzar una formación integral, mejorando de esta manera la calidad educativa.

En el tema de la integración de las TICS en la educación, encontramos cuatro campos que se deben investigar. El primer campo es el referido a la infraestructura, el segundo campo es el referido a los sujetos de la educación que son los estudiantes, el tercer campo es el referido a los profesores y el cuarto campo es referido al entorno educativo, donde están los medios de comunicación masivo y el acceso a las TICS en las cabinas Internet o en sus domicilios.

Importancia teórica

El tema reviste importancia teórica porque permite conocer el grado de relación que existe entre el uso de la Ofimática y el aprendizaje significativo de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria, en el periodo lectivo 2014.

Es interesante analizar como la educación a través del tiempo ha propuesto grandes transformaciones que conducen a un mejoramiento en la formación de los estudiantes y la manera como cada uno de los maestros y maestras lo ha apropiado, esto sobre todo por la aparición de las TICS.

Es por ello que hoy en día el profesor se debe presentar como un sujeto capaz de incidir positivamente en la forma de pensar y actuar de sus estudiantes, y una de esas formas es dotarlos de métodos que le permitan explotar de forma efectiva la computadora y los recursos de las TICS desde su asignatura, siendo capaz de poner en función de la enseñanza todos los recursos que estos medios nos brindan.

Abordar este problema desde el aspecto teórico ayuda a realizar un análisis epistemológico y su comprensión para resolverlo.

Importancia metodológica

El aporte de la investigación es metodológico porque se demostrará el grado de relación que existe entre el uso de la Ofimática y el aprendizaje significativo de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria, en el periodo lectivo 2014.
Importancia práctica

La presente investigación es de gran importancia práctica ya que permitirá conocer el nivel de relación entre el uso de la Ofimática y el aprendizaje significativo de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria, en el periodo lectivo 2014. Permite también proponer modificaciones en las programaciones curriculares vigentes adecuándolas a las necesidades reales de los alumnos.

Justificación de la Investigación

Actualmente nos encontramos en un proceso de constantes cambios y transformaciones que obedecen a una serie de factores y entre ellas a la incorporación vertiginosa de nuevas tecnologías de la información y la comunicación en diversos campos, incluidos en el aspecto educativo. De acuerdo a la UNESCO (2005) los sistemas educativos de todo el mundo se enfrentan actualmente al desafío de utilizar las nuevas tecnologías de la información y la comunicación para proveer a sus estudiantes con las herramientas y conocimientos necesarios para el siglo XXI. En el año 2005, el Informe Mundial sobre la Educación de la UNESCO, "El Imperativo de la Calidad", enfatizó en la importancia de los métodos de aprendizaje y en la utilización de materiales educativos, infraestructura y acceso a las TICS, como un importante desafío en el campo educativo.

Las tecnologías de la información y la comunicación TICS son un factor de vital importancia en la transformación de diversos campos de la sociedad. En el campo educativo tienen el potencial de transformar la naturaleza de la educación en cuanto a dónde y cómo se produce el proceso de enseñanza aprendizaje, así como de introducir cambios en los roles de los profesores y los estudiantes, y en las diferentes acciones que se realiza en el proceso educativo, incluido en temas de gestión institucional.

En este nuevo panorama se enfatiza la importancia de desarrollar nuevas competencias, capacidades, habilidades y uso de herramientas. De acuerdo a Valzacchi (2008) los estudiantes deben cultivar las siguientes destrezas que según los estándares de la International Society for Technology in Education— son necesarios para desenvolverse en el siglo XXI. Estas son: manejar con soltura el empleo de la tecnología; comunicar información e ideas usando una gran variedad de medios y formatos; acceder, intercambiar, compilar, organizar, analizar y sintetizar información; saber encontrar información adicional; saber evaluar la información y sus fuentes; construir, producir y publicar modelos, contenidos y otros trabajos creativos; colaborar y cooperar en grupos de trabajo e interactuar con otros en forma apropiada y ética.
En el país se inició el proceso de integración de las TICS en el sistema educativo público estatal a través del Proyecto Huascarán y actualmente a través de la Dirección General de Tecnologías Educativas del Ministerio de Educación, con la finalidad que las TICS de acuerdo al (Ministerio de Educación, 2007, p.60) "mejoren la calidad de la educación secundaria para que los estudiantes alcancen una formación integral que comprenda la consecución de logros de aprendizaje y una sólida formación en valores".

Esta investigación también se justifica teniendo en consideración que de acuerdo a Guiloff, 2007, p.11, "no existe suficiente información sobre el compromiso e interacción tecnológica relacionada con las actividades de aprendizaje formal de los estudiantes" y de acuerdo a Condie, 2007, p.75, "a la fecha hay muchos estudios de la relación entre TICS y la educación, sin embargo varían de acuerdo a las regiones donde se han realizado, con estudiantes de ciertas características y disciplinas; siendo necesario hacer investigaciones locales específicas".

Asimismo este tema es de especial importancia y de actualidad, y de acuerdo a las diversas organizaciones, instituciones e investigadores que vienen trabajando sobre las TICS y la educación, han convocado a realizar investigaciones a nivel micro con la finalidad de contribuir a la generación de conocimiento científico.

El trabajo también se justifica puesto que permitirá entregar a las autoridades que vienen implementando la integración de las TICS a través de la Dirección General de Tecnologías Educativas del Ministerio de Educación, resultados sobre el desarrollo de capacidades TICS en los estudiantes.

2.5 Limitaciones de la Investigación

Por ser temas nuevos no se encuentran con libros especializados, o hay muy poca bibliografía. Se recurrió principalmente al INTERNET. Los trabajos de investigación respecto al tema de tratamiento son muy escasos nuestro País.

Asimismo el resultado de los datos estará en base de la sinceridad y estado de ánimo de los encuestados.

Las más importantes limitaciones de esta investigación son las siguientes:

- Escasez de antecedentes de la investigación (revistas especializadas, tesis, internet) relacionados con el desarrollo de capacidades TIC en estudiantes de educación secundaria, especialmente de estudios cuasi experimentales, en el país y el extranjero.

- Escasez de material bibliográfico y científico sobre el tema, específicamente sobre conceptos, categorías, etc. por tratarse de un tema nuevo y de reciente incorporación en el ámbito de la educación.
• Inexistencia de pruebas estandarizadas y validadas para medir las capacidades TIC en estudiantes de educación secundaria en el Perú, pues las que se encontraron fueron dirigidos a profesores de un país extranjero.
• Escasa cultura informática por parte de los estudiantes con respecto a la Ofimática (Microsoft Office).
• La poca importancia de la ofimática en la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente.
• Recursos económicos insuficientes para el debido acceso tanto al software como al hardware.
• Poca accesibilidad de los alumnos de la UNE, a la información y software aplicativo de los instrumentos de investigación.
CAPÍTULO III: METODOLOGÍA

3.1 PROPUESTA DE OBJETIVOS

3.1.1 Objetivos General
Determinar la relación que existe entre el uso de la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

3.1.2 Objetivos Específicos
a. Determinar la relación que existe entre el uso de la Ofimática y el aprendizaje conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

b. Determinar la relación que existe entre el uso de la Ofimática y el aprendizaje procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

c. Determinar la relación que existe entre el uso de la Ofimática y el aprendizaje actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

3.2 SISTEMA DE HIPÓTESIS

3.2.1 Hipótesis General
Existe relación significativa entre el uso de la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

3.2.2 Hipótesis Específicas
a. Existe relación significativa entre el uso de la Ofimática y el aprendizaje conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.
b. Existe relación significativa entre el uso de la Ofimática y el aprendizaje procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

c. Existe relación significativa entre el uso de la Ofimática y el aprendizaje actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

3.3 SISTEMA DE VARIABLES
La presente investigación cuenta con dos variables como se presenta a continuación:
- Uso de la Ofimática.
- Aprendizaje significativo de la Cinemática

<table>
<thead>
<tr>
<th>VARIABLE I</th>
<th>DIMENSION</th>
<th>INDICADORES</th>
<th>ITEMS (Instrumento N° 01)</th>
</tr>
</thead>
<tbody>
<tr>
<td>USO DE LA OFIMÁTICA</td>
<td>MICROSOFT WORD</td>
<td>Identifica el valor de su Uso</td>
<td>- Item 01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compara la dificultad de sus herramientas</td>
<td>- Item 02</td>
</tr>
<tr>
<td></td>
<td>MICROSOFT EXCEL</td>
<td>Analiza el orden de cada dato</td>
<td>- Item 03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Identifica la importancia de las funciones</td>
<td>- Item 04</td>
</tr>
<tr>
<td></td>
<td>MICROSOFT POWER POINT</td>
<td>Compara los diseños de las diapositivas</td>
<td>- Item 05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elabora diversas diapositivas</td>
<td>- Item 06</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VARIABLE II</th>
<th>DIMENSION</th>
<th>INDICADORES</th>
<th>ITEMS (Instrumento N° 02)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APRENDIZAJE SIGNIFICATIVO DE LA CINEMÁTICA</td>
<td>CONCEPTUAL</td>
<td>Define términos</td>
<td>- Item 07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Describe la diferencia entre movimientos</td>
<td>- Item 08</td>
</tr>
<tr>
<td></td>
<td>PROCEDIMENTAL</td>
<td>Reconoce herramienta adecuada</td>
<td>- Item 09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aplica funciones</td>
<td>- Item 10</td>
</tr>
<tr>
<td></td>
<td>ACTITUDINAL</td>
<td>Valora la importancia de cada movimiento</td>
<td>- Item 11</td>
</tr>
</tbody>
</table>
3.4 TIPO Y MÉTODO DE INVESTIGACIÓN

El presente proyecto de investigación es de tipo aplicativo ya que la indagación e interpretación de la problemática existente será utilizada para reflexionar en torno a la búsqueda de una herramienta informática que permita resolver la problemática detectada y en virtud de mejorar el aprendizaje significativo de la cinemática.

Según Kerlinger, F. (2002:504) es de tipo No Experimental y según Méndez, Namihira, Moreno y Sosa, (2009:12) es de tipo Transversal ya que “es el estudio en el cual se mide una sola vez la o las variables; se miden las características de uno o más grupos de unidades en un momento dado, sin pretender evaluar la evolución de esas unidades.”

Es de método descriptivo ya que describe las variables en un solo momento y en un tiempo único. Sánchez, H y Reyes C (1998, p. 33) argumentan que la investigación descriptiva: “Consiste en describir, analizar e interpretar sistemáticamente un conjunto de hechos relacionados con otras variables tal como se da en el presente. El método descriptivo apunta a estudiar el fenómeno en su estado actual y en su forma natural...”

El presente proyecto de investigación es de tipo aplicativo ya que la indagación e interpretación de la problemática existente será utilizada para reflexionar en torno a la búsqueda de una herramienta informática que permita resolver la problemática detectada y en virtud de mejorar el Rendimiento Académico en las aulas de innovación.

El siguiente esquema señala las etapas de nuestra investigación conteniendo implícitamente una metodología:

![Diagrama de las etapas de la investigación](attachment:diagrama.png)

En consecuencia la presente investigación de acuerdo a las características del planteamiento del problema, hipótesis formuladas y los objetivos propios de la investigación, se enmarca dentro del método Descriptivo, basado en el modelo cuantitativo, siendo de tipo aplicativo la indagación e interpretación de la problemática.
existente. La búsqueda de una herramienta informática que permita resolver la problemática detectada y en virtud de mejorar la enseñanza de la Cinemática.

3.5 DISEÑO DE LA INVESTIGACIÓN DESARROLLADA
Esta investigación es de diseño descriptivo correlacional ya que describe la relación entre sus dos variables, en este caso la Ofimática y el Aprendizaje. Según Hernández, R. (2006): "este tipo de estudios tiene como propósito conocer la relación que exista entre dos o más conceptos, categorías o variables en un contexto en particular"

3.6 POBLACIÓN Y MUESTRA

Dónde:
- M = Muestra
- O₁ = Observación de la variable 1
- O₂ = Observación de la variable 2
- R = Correlación entre dichas variables

POBLACION
La población está conformada por 1,100 estudiantes de la Institución Educativa Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

MUESTRA
La muestra no es probabilística sino intencional a criterio de los investigadores y está conformada por los estudiantes del 5to "B" de Secundaria Turno mañana de la Institución Educativa Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, es decir, 30 estudiantes para así tener una mejor precisión en la identificación si existe o no relación entre el uso de la ofimática y el aprendizaje significativo de la Cinemática.
SEGUNDA PARTE: ASPECTOS PRACTICOS
CAPITULO IV: INSTRUMENTO DE INVESTIGACIÓN Y RESULTADOS

4.1 SELECCIÓN Y VALIDACIÓN DE INSTRUMENTOS

4.1.1 Técnicas e instrumentos

a. Variable I: Uso de la Ofimática

La técnica que se empleó para medir la variable Ofimática en los estudiantes del 5to B de Secundaria turno mañana de la Institución Educativa Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, es la encuesta, constituido por 10 ítems. Se recogió la información de 30 estudiantes de Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la Institución Educativa Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Las dimensiones de la variable son las siguientes:
- **Primera dimensión**: Microsoft Word, integrada por 04 ítems.
- **Segunda dimensión**: Microsoft Excel, integrada por 02 ítems.
- **Tercera dimensión**: Microsoft Power Point, integrada por 04 ítems.

b. Variable II: Aprendizaje significativo de la Cinemática

La técnica que se empleó para medir la variable Aprendizaje significativo de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente de los estudiantes del 5to B de Secundaria turno mañana de la Institución Educativa Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, es el cuestionario, constituido por 10 ítems. Se recogió la información de 30 estudiantes.

Las dimensiones de la variable son las siguientes:
- **Primera dimensión**: Aprendizaje Conceptual integrada por 04 ítems.
- **Segunda dimensión**: Aprendizaje Procedimental, integrada por 04 ítems.
- **Tercera dimensión**: Aprendizaje Actitudinal, integrada por 02 ítems.

4.1.2 Validez de los instrumentos

Para esta tesis se utilizó el tipo de **Validez de Contenido**. Por tal motivo en la recopilación de la información del uso de la Ofimática se aplicó la Técnica de Encuesta, con sus correspondientes instrumentos.

Todo instrumento de recolección de datos debe asumir dos propiedades esenciales: validez y confiabilidad.

Con la **validez** se determina la revisión de la presentación del Contenido, el contraste de los indicadores con los ítems que miden las variables correspondientes. Hernández
S. (2006) expresa la validez como el grado de precisión con el que el test utilizado mide realmente lo que está destinado a medir. Lo expresado anteriormente define la validación de los instrumentos, como la determinación de la capacidad de los instrumentos para medir las cualidades para lo cual fueron construidos.

Los instrumentos de medición utilizados (encuestas, cuestionario) han sido validados mediante el procedimiento conocido como -juicio de expertos.

A los expertos se les suministró los instrumentos (matriz) de validación donde se evaluó la coherencia entre los reactivos, las variables, las dimensiones y los indicadores, presentadas en la matriz de operacionalización de las variables, así como los aspectos relacionados con la calidad técnica del lenguaje (claridad de las preguntas y la redacción).

La validación del instrumento se realiza en base al marco teórico, considerándose la categoría de "validez de contenido". Se utiliza el procedimiento de juicio de expertos calificados quienes determinaron el coeficiente de confiabilidad a partir del análisis y evaluación de los ítems del respectivo instrumento.

La validez de expertos para la encuesta realizada a los alumnos sobre el uso de la Ofimática fue de 79.80%, distribuidos en la siguiente tabla:

Instrumento I: Encuesta sobre el uso de la Ofimática dirigido a los estudiantes

<table>
<thead>
<tr>
<th>EXPERTOS</th>
<th>CRITERIOS</th>
<th>MG. Juan Huamán</th>
<th>MG. Juan Carlos Valenzuela</th>
<th>Dr. Lola Caballero Chávez</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARIDAD</td>
<td>Está formulado con lenguaje apropiado.</td>
<td>85</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>OBJETIVIDAD</td>
<td>Está expresado en conductas observables.</td>
<td>80</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>ACTUALIDAD</td>
<td>Adecuado al avance de la ciencia y la tecnología.</td>
<td>80</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>ORGANIZACIÓN</td>
<td>Existe una organización lógica entre variables e indicadores.</td>
<td>80</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>SUFICIENCIA</td>
<td>Comprende aspectos en cantidad y calidad.</td>
<td>75</td>
<td>80</td>
<td>79</td>
</tr>
<tr>
<td>INTENCIONALIDAD</td>
<td>Adecuado para valorar aspectos sobre las TICs y el aprendizaje de la Cinemática</td>
<td>80</td>
<td>70</td>
<td>80</td>
</tr>
<tr>
<td>CONSISTENCIA</td>
<td>Consistencia entre la formulación del problema, objetivos y la hipótesis.</td>
<td>79</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>COHERENCIA</td>
<td>De índices, indicadores y las dimensiones.</td>
<td>75</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>METODOLOGIA</td>
<td>La estrategia responde al propósito de la investigación.</td>
<td>85</td>
<td>85</td>
<td>81</td>
</tr>
</tbody>
</table>

TOTALS

| TOTALES | 79.6% | 79.7% | 80% |
| MEDIA DE VALIDACION | 79.80% |

Fuente: Informes de expertos sobre validez y aplicabilidad del instrumento.
OPINIÓN DE APLICABILIDAD: Si es aplicable para el propósito propuesto.

PROMEDIO DE VALORACIÓN: 79.80%.

<table>
<thead>
<tr>
<th>EXPERTO</th>
<th>PORCENTAJES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG. Juan Carlos Valenzuela</td>
<td>79.6%</td>
</tr>
<tr>
<td>MG. Juan C. Huamán Hurtado</td>
<td>79.7%</td>
</tr>
<tr>
<td>Dr. Lolo Caballero Cifuentes</td>
<td>80.0%</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>79.80%</td>
</tr>
</tbody>
</table>

La validez de expertos para la encuesta aplicado es del 79.80% lo que significa que se debe aplicar este instrumento.

Cabanillas, G., (2004) propuso el siguiente cuadro de valoración acerca de los instrumentos, en el cual pudimos obtener el nivel de validez de los instrumentos empleado en esta tesis.

CUADRO DE VALORES DE LOS NIVELES DE VALIDEZ

<table>
<thead>
<tr>
<th>VALORES</th>
<th>NIVELES DE VALIDEZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>91-100</td>
<td>Excelente</td>
</tr>
<tr>
<td>81-90</td>
<td>Muy bueno</td>
</tr>
<tr>
<td>71-80</td>
<td>Bueno</td>
</tr>
<tr>
<td>61-70</td>
<td>Regular</td>
</tr>
<tr>
<td>51-60</td>
<td>Deficiente</td>
</tr>
</tbody>
</table>

Cabanillas, G., (2004, p. 76)

Opinión de aplicabilidad: Los instrumentos son aplicables y pertinentes; cuentan con un valor de 79.80 y es bueno de acuerdo a este cuadro de valoración.
Instrumento II: Cuestionario sobre el aprendizaje de la Cinemática dirigido a los estudiantes:

<table>
<thead>
<tr>
<th>EXPERTOS, INFORMANTES E INDICADORES</th>
<th>CRITERIOS</th>
<th>MG. Juan Huaman Hurtado</th>
<th>MG. Juan Carlos Valenzuela</th>
<th>Dr. Lolo Caballero Cifuentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLARIDAD</td>
<td>Está formulado con lenguaje apropiado.</td>
<td>85</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>OBJETIVIDAD</td>
<td>Está expresado en conductas observables.</td>
<td>85</td>
<td>75</td>
<td>83</td>
</tr>
<tr>
<td>ACTUALIDAD</td>
<td>Adecuado al avance de la ciencia y la tecnología.</td>
<td>80</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>ORGANIZACIÓN</td>
<td>Existe una organización lógica entre variables e indicadores.</td>
<td>85</td>
<td>85</td>
<td>82</td>
</tr>
<tr>
<td>SUFICIENCIA</td>
<td>Comprende los aspectos en cantidad y calidad.</td>
<td>75</td>
<td>80</td>
<td>82</td>
</tr>
<tr>
<td>INTENCIONALIDAD</td>
<td>Adecuado para valorar aspectos sobre las TICs y el aprendizaje de la Cinemática</td>
<td>80</td>
<td>75</td>
<td>80</td>
</tr>
<tr>
<td>CONSISTENCIA</td>
<td>Consistencia entre la formulación del problema, objetivos y la hipótesis.</td>
<td>79</td>
<td>80</td>
<td>83</td>
</tr>
<tr>
<td>COHERENCIA</td>
<td>De índices, indicadores y las dimensiones.</td>
<td>75</td>
<td>85</td>
<td>80</td>
</tr>
<tr>
<td>METODOLOGIA</td>
<td>La estrategia responde al propósito de la investigación.</td>
<td>85</td>
<td>85</td>
<td>81</td>
</tr>
<tr>
<td>TOTALES</td>
<td></td>
<td>83.6%</td>
<td>82.7%</td>
<td>82%</td>
</tr>
</tbody>
</table>

Fuente: Informes de expertos sobre validez y aplicabilidad del instrumento.

OPINIÓN DE APLICABILIDAD: Si es aplicable para el propósito propuesto.

PROMEDIO DE VALORACIÓN: 79.77%.

<table>
<thead>
<tr>
<th>EXPERTO</th>
<th>PORCENTAJES</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG. Juan Carlos Valenzuela</td>
<td>82.7%</td>
</tr>
<tr>
<td>MG. Juan C. Huamán Hurtado</td>
<td>83.6%</td>
</tr>
<tr>
<td>Dr. Lolo Caballero Cifuentes</td>
<td>82.0%</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>82.77%</td>
</tr>
</tbody>
</table>

La validez de expertos para la encuesta aplicado es del 82.77% lo que significa que se debe aplicar este instrumento.

Opinión de aplicabilidad: Los instrumentos son aplicables y pertinentes; cuentan con un valor de 82.77 y es muy bueno de acuerdo a este cuadro de valoración.
4.1.3 Confiabilidad de los instrumentos

El criterio de confiabilidad de los instrumentos se determina en la presente investigación, por la fórmula del KR-20 y el coeficiente del Alfa Cronbach, desarrollado por J. L. Cronbach, y requiere de instrumentos de medición, las cuales son las siguientes:

Para el Coeficiente de alfa de Cronbach:

Criterio de confiabilidad valores (Kerlinger 2002)

- No es confiable 0 a 0.60
- Baja confiabilidad 0.61 a 0.69
- Existe confiabilidad 0.70 a 0.75
- Fuerte confiabilidad 0.76 a 0.89
- Alta Confiable 0.90 a 1

Para Kuder Richardson 20:

Escala de Confiable lidad según GUILFORD

<table>
<thead>
<tr>
<th>ESCALA</th>
<th>CATEGORÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 0.20</td>
<td>MUY BAJA</td>
</tr>
<tr>
<td>0.21 – 0.40</td>
<td>BAJA</td>
</tr>
<tr>
<td>0.41 – 0.60</td>
<td>MODERADA</td>
</tr>
<tr>
<td>0.61 – 0.80</td>
<td>ALTA</td>
</tr>
<tr>
<td>0.81 – 1</td>
<td>MUY ALTA</td>
</tr>
</tbody>
</table>

Con respecto a la Confiable lidad se estima que un instrumento de medición es confiable cuando permite determinar que el mismo, mide lo que el investigador quiere medir, y que, aplicado varias veces, replique el mismo resultado.

Hernández, S.(2007) indica que la confiabilidad de un instrumento de medición se refiere al grado en que su aplicación repetida al mismo sujeto u objeto, produce iguales resultados.

Encuesta a Estudiantes: USO DE LA OFIMÁTICA

Para determinar la confiabilidad se empleó el procedimiento de Medidas de Consistencia, el cual permitió obtener el Coeficiente de Alfa de Cronbach, el cual se utiliza para estimar la confiabilidad de la consistencia del instrumento con más de dos alternativas de respuesta (puede ser bajo la escala tipo Likert), con el fin de comprobar con cuanta exactitud, los ítems son consistentes, con relación a lo que se pretende medir.
El Alfa de Cronbach es un índice, que permite comprobar la confiabilidad del instrumento de la investigación y presenta valores entre 0 y 1.

Si el valor es cercano a la unidad se trata de un instrumento fiable que hace mediciones estables y consistentes y si es menor a 0,8 presenta una variabilidad heterogénea en sus ítems y nos puede llevar a conclusiones equivocadas.

Confiabilidad del Instrumento Uso de la Ofimática

Dónde:

\[\alpha = \frac{K}{K-1} \left[1 - \frac{\sum S_i}{S_T} \right] \]

\(\alpha\) = Alfa de Cronbach
\(K\) = Numero de ítems del instrumento
\(S_i\) = Varianza de cada ítems
\(S_T\) = Varianza Total

El coeficiente de Alfa de Cronbach, requirió de una sola administración de los instrumentos de medición a los estudiantes en el uso de la Ofimática, alcanzando el 82% de confiabilidad en una prueba piloto de 10 estudiantes del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

TABULACIÓN DE LA VARIABLE I – Uso de la Ofimática

<table>
<thead>
<tr>
<th>Estudiantes</th>
<th>lt.1</th>
<th>lt.2</th>
<th>lt.3</th>
<th>lt.4</th>
<th>lt.5</th>
<th>lt.6</th>
<th>lt.7</th>
<th>lt.8</th>
<th>lt.9</th>
<th>lt.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>E2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>E3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>E4</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>E5</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>E6</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>E7</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>E8</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>E9</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>E10</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Este proceso compromete el deseo inequívoco de búsqueda de una mejora continua en el proceso de investigación, luego de varios tratamientos, consejos y reformulaciones de las preguntas alcanzamos el siguiente nivel de índices de los ítems.
Resumen del procesamiento de los casos (según SPSS)

<table>
<thead>
<tr>
<th></th>
<th>N°</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Validos</td>
<td>10</td>
<td>100,0</td>
</tr>
<tr>
<td>Excluídos</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>100,0</td>
</tr>
</tbody>
</table>

Eliminación por lista basada en todas las variables del procedimiento

<table>
<thead>
<tr>
<th>Estadísticos de fiabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfa de Cronbach</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Como se puede apreciar, el resultado tiene un valor α=0.820, lo cual permite decir que la encuesta en su versión de 10 ítems tiene una fuerte confiabilidad, de acuerdo al criterio de valores (KERLINGER-2002). Se recomienda el uso de dicho instrumento para recoger información con respecto a la variable I: Uso de la Ofimática.

Confiabilidad del instrumento Aprendizaje significativo de la Cinemática

El criterio de confiabilidad de este instrumento, se determina por el coeficiente de Kuder-Richardson 20, desarrollado por Kuder y Richardson en 1937, requiere de una sola administración del instrumento de medición y es aplicable en las pruebas de ítems dicotómicos en los cuales existen respuestas correctas e incorrectas posibles, por lo que puede ser utilizado para determinar la confiabilidad en escalas cuyos ítems tienen como respuesta dos alternativas. Entendemos por confiabilidad el grado en que el instrumento examen es consistente al medir las variables. Su fórmula determina el grado de consistencia y precisión.

La fórmula del estadístico de confiabilidad Kuder-Richardson:

\[r'_n = \frac{n}{n-1} \left(\frac{V_t}{V_t} - \sum pq \right) \]

En donde:

- \(r'_n \) = coeficiente de confiabilidad.
- \(n \) = número de ítems que contiene el instrumento.
- \(V_t \) = varianza total de la prueba.
- \(\sum pq \) = sumatoria de la varianza individual de los ítems.
Mediante la aplicación del Software estadístico SPSS V 22.0 se obtuvo la Confiabilidad Kuder-Richardson del instrumento aplicado. Se aplicó una muestra piloto a 10 estudiantes del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

TABULACIÓN DE LA VARIABLE II – Aprendizaje significativo de la Cinemática

<table>
<thead>
<tr>
<th>Estudiantes</th>
<th>lt.1</th>
<th>lt.2</th>
<th>lt.3</th>
<th>lt.4</th>
<th>lt.5</th>
<th>lt.6</th>
<th>lt.7</th>
<th>lt.8</th>
<th>lt.9</th>
<th>lt.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E8</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Este proceso compromete el deseo inequívoco de búsqueda de una mejora continua en el proceso de investigación, luego de varios tratamientos, consejos y reformulaciones de las preguntas alcanzamos el siguiente nivel de índices de los ítems.

Resumen del procesamiento de los casos

<table>
<thead>
<tr>
<th>Casas</th>
<th>N</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válidos</td>
<td>10</td>
<td>100.0</td>
</tr>
<tr>
<td>Excluidos(a)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>10</td>
<td>100.0</td>
</tr>
</tbody>
</table>

a) Eliminación por lista basada en todas las variables del procedimiento.
Estadísticos de fiabilidad
Como se puede apreciar, el resultado tiene un valor $kr = 0.642$, lo cual permite decir que el Cuestionario en su versión de 10 ítems tiene una Alta confiabilidad, de acuerdo al criterio de valores (GUILFORD). Se recomienda el uso de dicho instrumento para recoger información con respecto a la variable II: Aprendizaje de la Cinemática.

4.2 TÉCNICAS DE RECOLECCIÓN DE DATOS
En razón de la naturaleza de la investigación, a las exigencias técnicas del marco referencial y a los antecedentes previos de la misma, se ha optado por el empleo de la técnica de la encuesta a través del cuestionario de preguntas.
- Las encuestas, a través de la cual se recogió información sobre el uso de la Ofimática.
- El cuestionario para medir el grado de aprendizaje significativo de la Cinemática.

4.3 TRATAMIENTO ESTADÍSTICO
Para establecer las relaciones entre las variables se aplicó el Coeficiente de Correlación de Pearson. En la prueba de Hipótesis utilizamos la prueba t de Student para el rechazo de la hipótesis nula y así comprobamos la hipótesis alterna.

4.4 RESULTADOS DE TABLAS Y GRÁFICOS
4.4.1 Variable I: Uso de la Ofimática
Instrumento Encuesta sobre el Uso de la Ofimática
a. Dimensión: Microsoft Word

<p>| Tabla N° 01 |
| --- | --- | --- | --- | --- | --- |</p>
<table>
<thead>
<tr>
<th>Escala</th>
<th>Teoría</th>
<th>Item 01</th>
<th>Item 02</th>
<th>Item 03</th>
<th>Item 04</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cant.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Totalmente en</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>desacuerdo</td>
<td>% 0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>En desacuerdo</td>
<td></td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>% 3,33</td>
<td>33,33</td>
<td>10,00</td>
<td>3,33</td>
<td>12,50</td>
<td>12,50</td>
</tr>
<tr>
<td>De acuerdo</td>
<td></td>
<td>20</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>% 66,67</td>
<td>33,33</td>
<td>43,33</td>
<td>26,67</td>
<td>42,50</td>
<td>42,50</td>
</tr>
<tr>
<td>Totalmente de</td>
<td></td>
<td>9</td>
<td>10</td>
<td>14</td>
<td>21</td>
<td>54</td>
</tr>
<tr>
<td>acuerdo</td>
<td></td>
<td>% 30,00</td>
<td>33,33</td>
<td>46,67</td>
<td>70,00</td>
<td>45,00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>% 100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
El 87.50% de los estudiantes del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, está de acuerdo o totalmente de acuerdo que el uso de Microsoft Word ayuda al aprendizaje significativo de la Cinemática.

b. Dimensión: Microsoft Excel

<table>
<thead>
<tr>
<th>Escala</th>
<th>Teoría</th>
<th>item 01</th>
<th>item 02</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalmente en desacuerdo</td>
<td>Cant. 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td></td>
</tr>
<tr>
<td>En desacuerdo</td>
<td>Cant. 1</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>3,33%</td>
<td>13,33%</td>
<td>8,33%</td>
<td></td>
</tr>
<tr>
<td>De acuerdo</td>
<td>Cant. 19</td>
<td>10</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>63,33%</td>
<td>33,33%</td>
<td>48,33%</td>
<td></td>
</tr>
<tr>
<td>Totalmente de acuerdo</td>
<td>Cant. 10</td>
<td>16</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>33,33%</td>
<td>53,33%</td>
<td>43,33%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Cant. 30</td>
<td>30</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
El 91.66% de los estudiantes del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, están entre de acuerdo y totalmente en desacuerdo que el Uso de Microsoft Excel ayuda al aprendizaje significativo de la Cinemática.

c. Dimensión: Microsoft Power Point

<table>
<thead>
<tr>
<th>Escala</th>
<th>Teoría</th>
<th>item 01</th>
<th>item 02</th>
<th>item 03</th>
<th>item 04</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Totalmente en desacuerdo</td>
<td>Cant. 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td>0,00%</td>
<td></td>
</tr>
<tr>
<td>En desacuerdo</td>
<td>Cant. 3</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>10,00%</td>
<td>6,67%</td>
<td>0,00%</td>
<td>16,67%</td>
<td>8,33%</td>
<td></td>
</tr>
<tr>
<td>De acuerdo</td>
<td>Cant. 10</td>
<td>17</td>
<td>15</td>
<td>14</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>33,33%</td>
<td>56,67%</td>
<td>50,00%</td>
<td>46,67%</td>
<td>46,67%</td>
<td></td>
</tr>
<tr>
<td>Totalmente de acuerdo</td>
<td>Cant. 17</td>
<td>11</td>
<td>15</td>
<td>11</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>56,67%</td>
<td>36,67%</td>
<td>50,00%</td>
<td>36,67%</td>
<td>45,00%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Cant. 30</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Gráfico N° 02
Uso de la Ofimática Dimensión Microsoft Excel y el aprendizaje de la Cinemática
El 91.67% de los estudiantes del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, están entre de acuerdo y totalmente en desacuerdo que el Uso de Microsoft Power Point ayuda al aprendizaje significativo de la Cinemática.

4.4.2 Variable II: Aprendizaje significativo de la Cinemática

<table>
<thead>
<tr>
<th>Calificaciones de los Estudiantes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESTUDIANTE 1</td>
</tr>
<tr>
<td>ESTUDIANTE 2</td>
</tr>
<tr>
<td>ESTUDIANTE 3</td>
</tr>
<tr>
<td>ESTUDIANTE 4</td>
</tr>
<tr>
<td>ESTUDIANTE 5</td>
</tr>
<tr>
<td>ESTUDIANTE 6</td>
</tr>
<tr>
<td>ESTUDIANTE 7</td>
</tr>
<tr>
<td>ESTUDIANTE 8</td>
</tr>
<tr>
<td>ESTUDIANTE 9</td>
</tr>
<tr>
<td>ESTUDIANTE 10</td>
</tr>
<tr>
<td>ESTUDIANTE 11</td>
</tr>
<tr>
<td>ESTUDIANTE 12</td>
</tr>
</tbody>
</table>
De acuerdo a los criterios obtenemos lo siguiente:

<table>
<thead>
<tr>
<th>Aprendizaje</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deficiente</td>
<td>Cant. 0 % 0,00%</td>
</tr>
<tr>
<td>Regular</td>
<td>Cant. 5 % 16,67%</td>
</tr>
<tr>
<td>Bueno</td>
<td>Cant. 11 % 36,67%</td>
</tr>
<tr>
<td>Muy bueno</td>
<td>Cant. 14 % 46,67%</td>
</tr>
<tr>
<td>Total</td>
<td>Cant. 30 % 100,00%</td>
</tr>
</tbody>
</table>

Casi el 50% de los estudiantes del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, tienen una calificación de muy buena.
a. Dimensión: Aprendizaje Conceptual

<table>
<thead>
<tr>
<th>Escala</th>
<th>Conceptual</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cant.</td>
<td>%</td>
</tr>
<tr>
<td>Deficiente</td>
<td>4</td>
<td>13,33%</td>
</tr>
<tr>
<td>Regular</td>
<td>12</td>
<td>40,00%</td>
</tr>
<tr>
<td>Bueno</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>Muy bueno</td>
<td>14</td>
<td>46,67%</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

GRÁFICO N° 04
Uso de la Ofimática y la Dimensión Aprendizaje Conceptual de la Cinemática

- El 46.67 % del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, tiene un Aprendizaje Conceptual muy bueno de la Cinemática y el 40 % es regular.
b. Dimensión: Aprendizaje Procedimental

TABLA N° 05

<table>
<thead>
<tr>
<th>Escala</th>
<th>Procedimental</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cant.</td>
<td>%</td>
</tr>
<tr>
<td>Deficiente</td>
<td>4</td>
<td>13,33%</td>
</tr>
<tr>
<td>Regular</td>
<td>12</td>
<td>40,00%</td>
</tr>
<tr>
<td>Bueno</td>
<td>0</td>
<td>0,00%</td>
</tr>
<tr>
<td>Muy bueno</td>
<td>14</td>
<td>46,67%</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

GRÁFICO N° 05

Uso de la Ofimática y la Dimensión Aprendizaje Procedimental de la Cinemática

El 43.33 % de los estudiantes del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, referencian un aprendizaje Procedimental Regular y Muy Bueno al respecto del aprendizaje de la Cinemática.
c. Dimensión: Aprendizaje Actitudinal

<table>
<thead>
<tr>
<th>Escala</th>
<th>Actitudinal</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cant.</td>
<td>%</td>
</tr>
<tr>
<td>Deficiente</td>
<td>Cant.</td>
<td>%</td>
</tr>
<tr>
<td>Regular</td>
<td>Cant.</td>
<td>%</td>
</tr>
<tr>
<td>Bueno</td>
<td>Cant.</td>
<td>%</td>
</tr>
<tr>
<td>Muy bueno</td>
<td>Cant.</td>
<td>%</td>
</tr>
<tr>
<td>Total</td>
<td>Cant.</td>
<td>%</td>
</tr>
</tbody>
</table>

El 80% de los estudiantes del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, referencian un aprendizaje Actitudinal Muy Bueno al respecto del aprendizaje de la Cinemática.
4.5 Prueba de hipótesis
La prueba de hipótesis consiste en determinar si la hipótesis es congruente con los datos obtenidos en la muestra. La hipótesis se retiene como un valor aceptable del parámetro si es congruente con los datos. Si no lo es, se rechaza (aunque los datos no se descartan).

4.5.1 Hipótesis General
Existe relación significativa entre el uso de la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Se quiere determinar la relación entre el uso de la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente, por ello utilizaremos el coeficiente de Pearson para determinar el grado de relación entre dichas variables.

El coeficiente de correlación de Pearson (r) es un método de correlación para variables medidas por intervalos o razón y para relaciones lineales. Se calcula a partir de las puntuaciones obtenidas en una muestra en dos variables.

Se relacionan las puntuaciones obtenidas de una variable con las puntuaciones obtenidas de la otra, con los mismos participantes o casos.

Hipótesis estadísticas:
Hipótesis nula (H₀): \(\rho = 0 \), No existe relación significativa entre el uso de la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Hipótesis alterna (H₁): \(\rho \neq 0 \), Existe relación significativa entre el uso de la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Fórmula de Pearson

\[
\frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{N \sum X^2 - (\sum X)^2} \cdot \sqrt{N \sum Y^2 - (\sum Y)^2}}
\]
El coeficiente r de Pearson puede variar de -1 a +1.
Donde:

$$-1 \leq r \leq +1$$

Los índices de correlación
Según Hernández, Fernández, y Baptista (2006, p. 453) para una mejor interpretación de los resultados del coeficiente r de Pearson, detalla de la siguiente forma:

CUADRO Nº 4

<table>
<thead>
<tr>
<th>COEFICIENTE</th>
<th>TIPO DE CORRELACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.00</td>
<td>Correlación negativa perfecta</td>
</tr>
<tr>
<td>-0.90</td>
<td>Correlación negativa muy fuerte</td>
</tr>
<tr>
<td>-0.75</td>
<td>Correlación negativa considerable</td>
</tr>
<tr>
<td>-0.50</td>
<td>Correlación negativa media</td>
</tr>
<tr>
<td>-0.25</td>
<td>Correlación negativa débil</td>
</tr>
<tr>
<td>-0.10</td>
<td>Correlación negativa muy débil</td>
</tr>
<tr>
<td>0.00</td>
<td>No existe correlación alguna entre las variables</td>
</tr>
<tr>
<td>+0.10</td>
<td>Correlación positiva muy débil</td>
</tr>
<tr>
<td>+0.25</td>
<td>Correlación positiva débil</td>
</tr>
<tr>
<td>+0.50</td>
<td>Correlación positiva media</td>
</tr>
<tr>
<td>+0.75</td>
<td>Correlación positiva considerable</td>
</tr>
<tr>
<td>+0.90</td>
<td>Correlación positiva muy fuerte</td>
</tr>
<tr>
<td>+1.00</td>
<td>Correlación positiva perfecta</td>
</tr>
</tbody>
</table>

Los datos han sido ingresados en el programa estadístico SPSS, obteniendo los siguientes resultados:
Diagrama de dispersión N° 1

<table>
<thead>
<tr>
<th></th>
<th>OFIMATICA</th>
<th>APRENDIZAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OFIMATICA Correlación de Pearson</td>
<td>1</td>
<td>.917(**)</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>APRENDIZAJE Correlación de Pearson</td>
<td>.917(**)</td>
<td>1</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td>.000</td>
<td>30</td>
</tr>
<tr>
<td>N</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

** La correlación es significativa al nivel 0,01 (bilateral).
Entonces el grado de correlación entre las variables Uso de la Ofimática y Aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente según el cuadro N°04, es **CORRELACIÓN POSITIVA MUY FUERTE**

PRUEBA T PARA ACEPTAR O RECHAZAR LA HIPÓTESIS NULA.

La prueba p requiere el cálculo \(t_{calculated} \) y el \(t_{crítico} \)

\[
t_{calculated} = r_{xy} \frac{n - 2}{\sqrt{1 - r_{xy}^2}} > t_{crítico}
\]

Paso 1: Hallar el coeficiente de Person (r)

De acuerdo a la tabla mostrada anteriormente, el coeficiente de correlación de Pearson es \(r = 0.917 \).

Paso 2: Planteamiento de la Hipótesis nula (\(H_0 \)) y la Hipótesis (\(H_1 \))

\(H_0: p=0 \)

\(H_1: p\neq0 \)

Paso 3: Establecer el nivel de confianza

95 %

Paso 4: Selección del nivel de significación

\(a=0.05 \)

Paso 5: Elección del valor estadístico prueba

\[
t_{calculated} = r_{xy} \frac{n - 2}{\sqrt{1 - r_{xy}^2}}
\]

Grados de libertad (gl) = \(n-2 \)
Reemplazando:

\[t_c = 0.917 \sqrt{\frac{30 - 2}{1 - 0.917^2}} = 12.164 \]

**Paso 6: Obtención del valor \(t \) crítico o \(t \) de la tabla con \(a = 0.025 \)

\[t_{29} = 2.048 \]

Paso 7: Formulación de la regla de decisión

El valor del \(t_c > t_{crítico} \)

Paso 8: Representación Gráfica

-2.048 \quad 2.048 \quad 12.164

Zona de rechazo

Zona de "aceptación"

Paso 9: Adopción de la decisión

Debido a que el valor de \(t_c \) es mayor al valor hallado en la tabla \((t_{29}) \), se debe rechazar la hipótesis nula (\(H_0 \))

Paso 10: Conclusión

Se infiere con un nivel de significación de \(a = 0.05 \) que existe relación significativa entre *El uso de la Ofimática y el Aprendizaje* de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.
4.5.2 Hipótesis Específicas

Hipótesis Específica 1:
Existen relación significativa entre el uso de la Ofimática y el Aprendizaje Conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Se quiere determinar la relación entre el uso de la Ofimática y el Aprendizaje Conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, por ello utilizaremos el coeficiente de Pearson para determinar el grado de relación entre dichas variables.

Hipótesis estadísticas:

Hipótesis nula: \(p=0 \), No existe relación significativa entre el uso de la Ofimática y el Aprendizaje Conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Hipótesis alterna: \(p \neq 0 \), Existe relación significativa entre el uso de la Ofimática y el Aprendizaje Conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Fórmula de Pearson

\[
 r = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{N \sum X^2 - (\sum X)^2} \cdot \sqrt{N \sum Y^2 - (\sum Y)^2}}
\]

El coeficiente \(r \) de Pearson puede variar de -1.0 a +1.0.

Donde:

\[-1 \leq r \leq +1\]

Los datos han sido ingresados en el programa estadístico SPSS, obteniendo el siguiente resultado:
La correlación es significativa al nivel 0,01 (bilateral).
Entonces el grado de correlación entre las variables Uso de la Ofimática y Aprendizaje Conceptual del curso de Cinemática según el cuadro N°04, es CORRELACIÓN POSITIVA MEDIA.

PRUEBA T PARA ACEPTAR O RECHAZAR LA HIPÓTESIS NULA.

La prueba p requiere el cálculo t\(_{calculated}\) y el t\(_{critical}\)

\[
t_{calculated} = r_{xy} \sqrt{\frac{n - 2}{1 - r_{xy}^2}} > t_{critical}
\]

Paso 1: Hallar el coeficiente de Person (r)

De acuerdo a la tabla mostrada anteriormente, el coeficiente de correlación de Pearson es \(r = 0.471\).

Paso 2: Planteamiento de la Hipótesis nula (H\(_0\)) y la Hipótesis (H\(_1\))

\[H_0: p = 0\]
\[H_1: p \neq 0\]

Paso 3: Establecer el nivel de confianza

95 %

Paso 4: Selección del nivel de significación

\(a = 0.05\)

Paso 5: Elección del valor estadístico prueba

\[
t_{calculated} = r_{xy} \sqrt{\frac{n - 2}{1 - r_{xy}^2}}
\]

Grados de libertad (gl) = n-2
Reemplazando:

\[
t_c = 0.471 \sqrt{\frac{30 - 2}{1 - 0.471^2}} = 2.825
\]

**Paso 6: Obtención del valor \(t \) crítico o \(t \) de la tabla con \(a=0.025 \)

\(t_{28}=2.048 \)

Paso 7: Formulación de la regla de decisión

El valor del \(t_c > t_{crítico} \)

Paso 8: Representación Gráfica

![Diagrama de zonas de aceptación y rechazo](image)

Paso 9: Adopción de la decisión

Debido a que el valor de \(t_c \) es mayor al valor hallado en la tabla \((t_{28}) \), se debe rechazar la hipótesis nula (\(H_0 \))

Paso 10: Conclusión

Se infiere con un nivel de significación de 0.05 que existe relación significativa entre **El uso de la Ofimática y el Aprendizaje Conceptual** de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.
Hipótesis Específica 2:
Existe relación significativa entre el uso de la Ofimática y el Aprendizaje Procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Se quiere determinar la relación entre el uso de la Ofimática y el Aprendizaje Procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, por ello utilizaremos el coeficiente de Pearson para determinar el grado de relación entre dichas variables.

Hipótesis estadísticas:

Hipótesis nula: $p=0$, No existe relación significativa entre el uso de la Ofimática y el Aprendizaje Procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Hipótesis alterna: $p \neq 0$, Existe relación significativa entre el uso de la Ofimática y el Aprendizaje Procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Fórmula de Pearson:

$$ r = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{N \sum X^2 - (\sum X)^2} \cdot \sqrt{N \sum Y^2 - (\sum Y)^2}} $$

El coeficiente r de Pearson puede variar de -1.0 a +1.0.

Donde:

$$ -1 \leq r \leq +1 $$

Los datos han sido ingresados en el programa estadístico SPSS, obteniendo el siguiente resultado:
ENTONCES el grado de correlación entre las variables Uso de la Ofimática y Aprendizaje Procedimental del curso de Cinemática según el cuadro N°04, es CORRELACIÓN POSITIVA MEDIA

PRUEBA T PARA ACEPTAR O RECHAZAR LA HIPÓTESIS NULA.
La prueba p requiere el cálculo $t_{calculado}$ y el $t_{crítico}$

$$t_{calculado} = r_{xy} \sqrt{\frac{n-2}{1-r_{xy}^2}} > t_{crítico}$$
Paso 1: Hallar el coeficiente de Person (r)
De acuerdo a la tabla mostrada anteriormente, el coeficiente de correlación de Pearson es \(r = 0.561 \)

Paso 2: Planteamiento de la Hipótesis nula (\(H_0 \)) y la Hipótesis (\(H_1 \))
\(H_0: p = 0 \)
\(H_1: p \neq 0 \)

Paso 3: Establecer el nivel de confianza
95 %

Paso 4: Selección del nivel de significación
\(a = 0.05 \)

Paso 5: Elección del valor estadístico prueba

\[
t_{calculated} = r_{xy} \sqrt{\frac{n-2}{1-r_{xy}^2}}
\]

Grados de libertad (gl) = \(n-2 \)

Reemplazando:

\[
t_{c} = 0.561 \sqrt{\frac{30-2}{1-0.561^2}} = 3.585
\]

Paso 6: Obtención del valor \(t \) crítico o \(t \) de la tabla con \(a = 0.025 \)
\(t_{0.025} = 2.048 \)

Paso 7: Formulación de la regla de decisión
El valor del \(t_{c} > t_{crítico} \)
Paso 8: Representación Gráfica

Paso 9: Adopción de la decisión
Debido a que el valor de t_c es mayor al valor hallado en la tabla (t_{29}), se debe rechazar la hipótesis nula (H_0)

Paso 10: Conclusión
Se infiere con un nivel de significación de 0.05 que existe relación significativa entre el uso de la Ofimática y el Aprendizaje Procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Hipótesis Específica 3:
Existe relación significativa entre el uso de la Ofimática y el Aprendizaje Actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.
Se quiere determinar la relación entre el uso de la Ofimática y el Aprendizaje Actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014, por ello utilizaremos el coeficiente de Pearson para determinar el grado de relación entre dichas variables.
Hipótesis estadísticas:

Hipótesis nula: \(p = 0 \). No existe relación significativa entre el uso de la Ofimática y el Aprendizaje Actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Hipótesis alterna: \(p \neq 0 \). Existe relación significativa entre el uso de la Ofimática y el Aprendizaje Actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Fórmula de Pearson

\[
 r = \frac{N \sum XY - (\sum X)(\sum Y)}{\sqrt{N \sum X^2 - (\sum X)^2} \cdot \sqrt{N \sum Y^2 - (\sum Y)^2}}
\]

El coeficiente \(r \) de Pearson puede variar de -1.0 a +1.0.
Donde:

\[-1 \leq r \leq +1\]

Los datos han sido ingresados en el programa estadístico SPSS, obteniendo el siguiente resultado:

DIAGRAMA DE DISPERSIÓN N° 4
CORRELACIONES

<table>
<thead>
<tr>
<th>OFIMATICA</th>
<th>ACTITUDINAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlación de Pearson</td>
<td>0,389(*)</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td>0,034</td>
</tr>
<tr>
<td>N</td>
<td>30 30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTITUDINAL</th>
<th>OFIMATICA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlación de Pearson</td>
<td>0,389(*)</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td>0,034</td>
</tr>
<tr>
<td>N</td>
<td>30 30</td>
</tr>
</tbody>
</table>

* La correlación es significante al nivel 0,05 (bilateral).

Entonces el grado de correlación entre las variables Uso de la Ofimática y Aprendizaje Conceptual del curso de Cinemática según el cuadro N°04, es CORRELACIÓN POSITIVA DEBIL.

PRUEBA T PARA ACEPTAR O RECHAZAR LA HIPÓTESIS NULA.

La prueba p requiere el cálculo $t_{calculado}$ y el $t_{crítico}$

$$
t_{calculado} = t_{xy} \sqrt{\frac{n-2}{1-r_{xy}^2}} > t_{crítico}
$$

Paso 1: Hallar el coeficiente de Person (r)

De acuerdo a la tabla mostrada anteriormente, el coeficiente de correlación de Pearson es $r = 0,389$

Paso 2: Planteamiento de la Hipótesis nula (H_0) y la Hipótesis (H_1)

H_0: $p=0$

H_1: $p\neq 0$

Paso 3: Establecer el nivel de confianza

95 %
Paso 4: Selección del nivel de significación

\[a = 0.05 \]

Paso 5: Elección del valor estadístico prueba

\[t_{calculated} = r_{xy} \sqrt{\frac{n - 2}{1 - r_{xy}^2}} \]

Grados de libertad (gl) = n-2

Reemplazando:

\[t_c = 0.389 \sqrt{\frac{30 - 2}{1 - 0.389^2}} = 2.234 \]

Paso 6: Obtención del valor \(t \) crítico o \(t \) de la tabla con \(a = 0.025 \)

\[t_{25} = 2.048 \]

Paso 7: Formulación de la regla de decisión

El valor del \(t_c \) > \(t \) crítico

Paso 8: Representación Gráfica

Paso 9: Adopción de la decisión

Debido a que el valor de \(t_c \) es mayor al valor hallado en la tabla \(t_{25} \), se debe rechazar la hipótesis nula \((H_0) \).
Paso 10: Conclusión
Se infiere con un nivel de significación de 0.05 que existe relación significativa entre *El uso de la Ofimática y el Aprendizaje Actitudinal* de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

4.6 Discusiones de resultados
- De acuerdo a nuestros resultados, se comprobó que existe una relación significativa entre nuestras variables, en proporción a las hipótesis planteadas por varios autores así como el de Miguel NIÑO BAZALAR, Soledad FERNANDEZ y Jhonatan ASALDE.
- Hemos inferido que el Uso de la Ofimática tiene una relación significativa con el Aprendizaje, así como lo manifiestan autores como: Edwin Marcelo TULCANAZ Ximena Beatriz, JOJOA y Ángela Carolina PADILLA, cuando en sus investigaciones concluyen que la Uso de Ofimática es vital tanto para el aprendizaje, así como para la enseñanza.
- Por factor tiempo, solo hemos el desarrollo del curso de Cinemática en un 70 %, es por eso la limitaciones al aplicar los instrumentos de recolección de datos.
- Tantos autores nacionales como internacionales, inferen que uso de TICs, Software educativos o herramientas informáticas como por ejemplo: la Ofimática; es considerado como una gran herramienta y/o método para la enseñanza, así como para el aprendizaje de Cursos en las Instituciones Educativas actuales, como se dio en este caso (aprendizaje del curso de Cinemática), por el alto porcentaje de aceptación.
- A diferencia de los docentes, se pudo visualizar que los estudiantes tienen un gran interés en descubrir una nueva forma de desarrollar sus cursos, y si es con tecnología informática mejor.
CONCLUSIONES

PRIMERA CONCLUSION: Existe relación significativa entre El uso de la Ofimática y el Aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

SEGUNDA CONCLUSION: Existe relación significativa entre El uso de la Ofimática y el Aprendizaje Conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

TERCERA CONCLUSION: Existe relación significativa entre el uso de la Ofimática y el Aprendizaje Procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

CUARTA CONCLUSION: Existe relación significativa entre El uso de la Ofimática y el Aprendizaje Actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.
RECOMENDACIONES

- Mayor énfasis en el Uso de las herramientas ofimáticas para poder desarrollar diversas formas de enseñanza-aprendizaje.

- Utilizar las herramientas ofimáticas como un recurso didáctico para resolver problemas de situación actuales.

- Los Docentes deberían de saber el uso y manejo de las herramientas ofimáticas para realización de temas adversas a su área.

- Desarrollar módulos o talleres sobre el uso de la ofimática y su importancia en la Educación Secundaria.

- Mayor difusión de los beneficios de las herramientas ofimáticas.

- Dominio y manejo de las TICs.

http://edutec.rediris.es/Revelec2/Revelec18/cabero_18.htm

CESAR COLL “Relación entre la enseñanza, el aprendizaje y el desarrollo”, (Algunos Desafíos de la Educación básica en el Umbral del nuevo milenio, página 4)

CONTENIDOS ACTITUDINALES, 2009

CONTENIDOS CONCEPTUALES, 2009

CONTENIDOS PROCEDIMENTALES, 2009

Dr. José ZILBERSTEIN TORUNCHA. CAPÍTULO 1. "Aprendizaje, Enseñanza y Desarrollo".
http://www.galeon.com/aprenderaaprender/general/Zilberstein1.htm#_ftn3

La Física y el Aprendizaje Significativo

La Ofimática (2014)
http://es.wikipedia.org/wiki/Ofim%C3%A1tica#Referencias

Movimiento Rectilíneo Uniforme
http://www.fisicalab.com/apartado/mru/intermedio

Movimiento Rectilíneo Uniforme Acelerado
http://www.fisicalab.com/apartado/mrua/intermedio

Portal del Instituto de Enseñanza Secundaria José María Arguedas

<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>OBJETIVOS</th>
<th>HIPOTESIS</th>
<th>VARIABLES, DIMENSIONES E INDICADORES</th>
<th>METODOLOGÍA</th>
<th>POBLACIÓN Y MUESTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROBLEMA GENERAL: ¿Cuál es la relación que existe entre el uso de la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td>OBJETIVO GENERAL: Determinar la relación entre el uso de la Ofimática y el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td>HIPOTESIS GENERAL:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROBLEMAS ESPECÍFICOS:</td>
<td>OBJETIVOS ESPECÍFICOS:</td>
<td>HIPOTESIS ESPECÍFICAS:</td>
<td>TIPO DE INVESTIGACIÓN: INVESTIGACIÓN CORRELACIONAL</td>
<td>POBLACIÓN: Está conformada por 1,100 estudiantes de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014.</td>
<td>MUESTRA: La muestra es no probabilística sino intencional y está conformada por el total de estudiantes del 5to B Turno mañana de la I.E. Huamán Poma de Ayala, es decir 30 estudiantes.</td>
</tr>
<tr>
<td>PE1: ¿Cuál es la relación que existe entre el uso de la Ofimática y el aprendizaje conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td>OE1: Determinar la relación entre el uso de la Ofimática y el aprendizaje conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td>HE1: Existe relación significativa entre el uso de la Ofimática y el aprendizaje Conceptual de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE2: ¿Cuál es la relación que existe entre el uso de la Ofimática y el aprendizaje procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td>OE2: Determinar la relación entre el uso de la Ofimática y el aprendizaje proce dimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td>HE2: Existe relación significativa entre el uso de la Ofimática y el aprendizaje Procedimental de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE3: ¿Cuál es la relación que existe entre el uso de la Ofimática y el nivel de aprendizaje actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td>OE3: Determinar la relación entre el uso de la Ofimática y el aprendizaje Actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td>HE3: Existe relación significativa entre el uso de la Ofimática y el aprendizaje Actitudinal de la Cinemática, primera unidad del área de Ciencia, Tecnología y ambiente del 5to B de Secundaria turno mañana de la I.E. “Felipe Huamán Poma de Ayala”, en el periodo 2014?</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ANEXOS

MATRIZ DE CONSISTENCIA

<table>
<thead>
<tr>
<th>VARIABLE X: USO DE LA OFIMATICA</th>
<th>MICROSOFT WORD</th>
<th>METODOLOGÍA</th>
<th>TIPO DE INVESTIGACIÓN: INVESTIGACIÓN CORRELACIONAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MUESTRA: 1.0bservación</td>
<td>Identifica el valor de su Uso</td>
<td>MÉTODO DESCRIPTIVO</td>
<td></td>
</tr>
<tr>
<td>ENCUESTA 2.0bservació</td>
<td>Compara la dificultad de sus herramientas</td>
<td>DISEÑO DE LA INVESTIGACIÓN: DESCRIPTIVO CORRELACIONAL</td>
<td></td>
</tr>
<tr>
<td>TOTAL DE ESTUDIANTES</td>
<td>MICROSOFT EXCEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE LA OFIMATICA</td>
<td>Adjusta el orden de cada dato</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INVESTIGACIÓN: POBLACIÓN:</td>
<td>Identifica la importancia de las funciones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huamán Poma de Ayala, es decir 30 estudiantes.</td>
<td>MICROSOFT POWER POINT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>La muestra es no probabilística sino intencional y está conformada por el total de estudiantes del 5to B Turno mañana de la I.E. Huamán Poma de Ayala, es decir 30 estudiantes.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

INDICADORES

<table>
<thead>
<tr>
<th>TIPO</th>
<th>METODOLOGÍA</th>
<th>POBLACIÓN Y MUESTRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>CORRELACIONAL</td>
<td>MICROSOFT WORD</td>
<td>BASED ON THE TOTAL OF 30 STUDENTS</td>
</tr>
<tr>
<td>DESCRIPTIVO</td>
<td>ENCUESTA</td>
<td>BASED ON THE TOTAL OF 30 STUDENTS</td>
</tr>
</tbody>
</table>

TECNICAS: LA ENCUESTA Y CUESTIONARIO
ENCUESTA DE OFIMÁTICA

En primer lugar permítanos darle las gracias por su colaboración. El presente cuestionario pretende medir la relación del Uso de la Ofimática y la relación con el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Use la siguiente escala de clasificación, para sus respuestas, marcando la categoría correspondiente con una equis (x):

1. TD: Totalmente en desacuerdo.
2. D : En desacuerdo.
3. A : De acuerdo.
4. TA: Totalmente de acuerdo.

INSTRUCCIONES:

Lee atentamente el contenido de cada pregunta y marque con una equis (x) la alternativa que cree la más apropiada. No hay respuesta mala ni buena, sólo se desea conocer su opinión.

VARIABLE I: Uso de la Ofimática

<table>
<thead>
<tr>
<th>Nº</th>
<th>PREGUNTAS</th>
<th>TD</th>
<th>D</th>
<th>A</th>
<th>TA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cree usted que Microsoft Word se utiliza mucho hoy en día.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Las herramientas de Microsoft Word son fáciles de usar.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Cada versión de Microsoft Word es cada vez mejor.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Es importante saber utilizar las herramientas del Microsoft Word.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensión: Microsoft Excel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Uno aprende a ordenar datos en Microsoft Excel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Es importante saber utilizar las funciones de Microsoft Excel.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimensión: Microsoft Power Point</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Son fáciles de usar las herramientas en Microsoft Power Point.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Los diseños de las diapositivas cada vez son mejores.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Las animaciones hacen un mejor trabajo en Power Point.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Para una exposición se ve más presentado hacerlo en Power Point.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¡MUCHAS GRACIAS!
CUESTIONARIO OFIMATICA Y EL APRENDIZAJE DE LA CINEMATICA

En primer lugar permítanos darle las gracias por su colaboración. El presente cuestionario pretende medir la relación del Uso de la Ofimática y la relación con el aprendizaje de la Cinemática, primera unidad del área de Ciencia, Tecnología y Ambiente del 5to B de Secundaria turno mañana de la I.E. Felipe Huamán Poma de Ayala, en el periodo lectivo 2014.

Por favor, responda todas las preguntas de este cuestionario, marcando con una X la respuesta correcta:

VARIABLE II: Aprendizaje significativo de la Cinemática

1) ¿QUÉ ES LA CINEMATICA?
 a. Rama de la física que estudia la Leyes del movimiento de los cuerpos.
 b. Ciencia que estudia los cuerpos.
 c. Ciencia que estudia los cines.
 d. Estudia las leyes y normas.

2) ¿CUÁLES SON LOS ELEMENTOS BASICOS DE LA CINEMATICA?
 a. Aire, fuego y tierra.
 b. Espacio, tiempo y un móvil.
 c. Velocidad, área y recorrido.
 d. Velocidad, móvil y aire.

3) ¿QUÉ ES EL MOVIMIENTO RECTILINEO UNIFORME?
 a. Es aquel con velocidad constante y cuya trayectoria es una línea recta.
 b. Es el movimiento variado.
 c. Es aquel que cambia constantemente de velocidades.
 d. Es el movimiento circular.

4) ¿CUÁL ES LA DIFERENCIA ENTRE EL MRU Y MRUV?
 a. El MRU tiene aceleración y el MRUA no la tiene.
 b. En el MRU la velocidad es la misma y en el MRUA su velocidad aumenta o disminuye.
 c. En el MRU su velocidad varía.
 d. El MRU tiene movimiento circular.

5) ¿CON QUE HERRAMIENTA OFIMATICA SE PODRA HALLAR UN RESULTADO DE UN MRU?
 a. Power Point.
 b. Excel.
 c. Word.
 d. Ninguno.

¡MUCHAS GRACIAS!
6) ¿PARA UNA EXPOSICION DE CINEMATICA QUE HERRAMIENTA OFIMATICA SE UTILIZARA?
 a. YouTube.
 b. Word.
 c. Power Point.
 d. Excel.

7) ¿CUÁL ES LA FORMULA QUE APlicaría EN EXCEL PARA HALLAR EL RESULTADO DE UN MRU? Dónde: D = distancia, t = tiempo y v = velocidad
 = división
 *= multiplicación
 a. Para distancia = v*t, para velocidad = D/t y para tiempo = D/v.
 b. Para velocidad = D/t, para tiempo = v*t y para distancia = D/v.
 c. Para distancia = v*t, para velocidad = v*t y para tiempo = v*D.
 d. Para tiempo = t/v, para velocidad = t/v y distancia = D/t.

8) ¿CÓMO SE COPIA UN RESULTADO HALLADO EN EXCEL DE MRUV A WORD O POWER POINT?
 a. Seleccionar cuadro/Clic derecho/Copiar, ir a Word o Power Point/Clic derecho/Pegar.
 b. Clic en Pegar/clic en copiar, ir a Word o Power Point.
 c. Seleccionar cuadro/Clic derecho, ir a Power Point/Clic en Copiar.
 d. Seleccionar cuadro/clic derecho/Pegar.

9) MARCA LA ALTERNATIVA CORRECTA
 a. Un cuerpo se mueve siempre en forma rectilínea.
 b. El MRU tiene una velocidad constante, es decir no varía.
 c. 70 km/h es igual a 50m/s.
 d. El MRU y el MRUV son movimientos circulares.

10) MARCA LA SOLUCIÓN CORRECTA
 a. En MRU la distancia es igual a la velocidad por la aceleración (D=v*a)
 b. Para hallar la aceleración en MRUV, es obligatoriamente saber la velocidad (sea inicial o final)
 c. En MRUV la aceleración es igual a velocidad final más velocidad inicial (a=V_f + V_o).
 d. 10 km/h es lo mismo que decir 10m/s

¡MUCHAS GRACIAS!