UNIVERSIDAD NACIONAL DE EDUCACIÓN
Enrique Guzmán y Valle
Alma Máter del Magisterio Nacional

FACULTAD DE TECNOLOGÍA
Escuela Profesional de Electrónica y Telecomunicaciones

MONOGRAFÍA

El internet de las cosas IoT

Examen de Suficiencia Profesional Res. Nº 0232-2019-D-FATEC

Presentada por:

Benito Condori, Gerson Teodor

Para optar al Título Profesional de Licenciado en Educación

Especialidad: Telecomunicaciones e Informática

Lima, Perú

2019
MONOGRAFÍA

El internet de las cosas IoT

Designación de Jurado Resolución N° 0232-2019-D-FATEC

Dr. La Rosa Longobardi, Carlos Jacinto
Presidente

Mg. Sotelo Raymondi, Amador Gregorio
Secretario

Mg. Chirinos Armas, Daniel Ramón
Vocal

Línea de Investigación: Tecnología y soportes educativos
Dedicatoria

Con aprecio a mi madre y hermanos por su incondicional apoyo para todo lo que soy; tanto profesional como de la vida.
Índice de contenidos

Portada ... i
Hoja de firmas de jurado .. ii
Dedicatoria ... iii
Índice de contenidos ... iv
Lista de figuras .. vii
Introducción .. viii

Capítulo I. Generalidades .. 9
1.1 El internet de las cosas IoT .. 9
1.2 Inteligencia artificial ... 11
1.3 El internet .. 13
1.4 La nube ... 13
1.5 Redes inalámbricas .. 14
 1.5.1 Red PAN ... 15
 1.5.2 Red LAN ... 15
 1.5.3 Red WAN .. 15
1.6 El futuro del internet de las cosas: IPv6 ... 16
 1.6.1 Como funciona una dirección IPv6.. 17
 1.6.2 Características y tipos de dirección IPv6 ... 19
 1.6.3 Sencillez y ahorro a futuro de IPv6 frente a IPv4 ... 21
 1.6.4 Implementación de IPv6 en las grandes industrias ... 22
 1.6.5 IPv6 a nivel mundial en el 2018 .. 24
1.7 Computación en la niebla .. 25

Capítulo II. Orígenes del internet de las cosas ... 27
2.1 Orígenes .. 27
2.2 Definiciones diferentes .. 29
2.3 Características del internet de las cosas .. 30
2.4 Modelos de comunicación IoT .. 32
 2.4.1 Comunicación de dispositivo a dispositivo ... 32
 2.4.2 Comunicación de dispositivo a la nube .. 33
2.4.3 Comunicación de dispositivo a puerta de enlace ..35
2.4.4 Comunicación intercambio de data mediante back-end.35
2.5 Sensores y actuadores IoT ...36
2.5.1 Como se conectan los dispositivos IoT a la red ..36

Capítulo III. Impacto del internet de las cosas ..38
3.1 Adopción de IoT en la industria ..38
3.2 El internet de las cosas en la logística ..41
 3.2.1 Mejoras en el sector de logística ...42
 3.2.2 IoT y gestión de flotas de transporte ...43
 3.2.3 Reducción de costos y mayor eficiencia ...43
 3.2.4 IoT y los beneficios operacionales ..44
3.3 Internet de las cosas en el sector salud ..44
 3.3.1 Transformación de sector salud ...45
 3.3.2 Dispositivos wearables ...47
3.4 El internet del medio ambiente ...49
 3.4.1 Agricultura conectada ...51
 3.4.2 Eficiencia energética ...51
3.5 Edificaciones inteligentes ..52
 3.5.1 Características de las edificaciones inteligentes ...53
 3.5.2 Smart grids ..54
 3.5.3 Asistentes virtuales para el hogar ..55
3.6 Cuestiones relacionadas con la seguridad ..56

Capítulo IV. Proyecto tecnológico ...61
4.1 Control de una casa domótica con celular vía WiFi61
 4.1.1 Descripción del proyecto ..61
 4.1.2 Materiales ...62
 4.1.3 Herramientas ...62
4.2 Guía de laboratorio ...63
 4.2.1 NodeMCU kit de desarrollo para IoT ...63
 4.2.2 Instalación de la placa NodeMCU a la plataforma arduino64
 4.2.3 Programación en arduino ...67
 4.2.4 APP Inventor ...71
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aplicación didáctica</td>
<td>72</td>
</tr>
<tr>
<td>Apreciación crítica y sugerencias</td>
<td>84</td>
</tr>
<tr>
<td>Referencias</td>
<td>86</td>
</tr>
<tr>
<td>Glosario</td>
<td>90</td>
</tr>
</tbody>
</table>
Lista de figuras

Figura 1. El internet de las cosas IoT .. 11
Figura 2. Inteligencia artificial AI del futuro ... 12
Figura 3. El internet conecta al mundo .. 13
Figura 4. La nube, almacenamiento de información 14
Figura 5. Red PAN conexión de dispositivos cercanos 15
Figura 6. Red LAN conexión de área local ... 15
Figura 7. Red WAN conexión de área amplia ... 16
Figura 8. Cantidad de direcciones IPv4 ... 18
Figura 9. Cantidad de direcciones IPv6 ... 18
Figura 10. Porcentaje de usuarios con IPv6 por países 24
Figura 11. Despliegue mayor al 15% de IPv6 en el mundo 25
Figura 12. Centralización de computación en la niebla 26
Figura 13. La evolución de un objeto inteligente 28
Figura 14. Comunicación de dispositivo a dispositivo 33
Figura 15. Comunicación tipo dispositivo a la nube 34
Figura 16. Comunicación tipo dispositiva a puerta de enlace 35
Figura 17. Intercambio de datos a través de back end 36
Figura 18. Funcionamiento de sensores y actuadores 37
Figura 19. Estadística IoT en los sectores para el 2020 39
Figura 20. Países con mayor porcentaje de aplicación IoT 40
Figura 21. Infraestructura IoT en el sector salud 46
Figura 22. Objetos inteligentes wearable fit ... 49
Figura 23. Internet de las cosas en el medio ambiente 52
Figura 24. Tecnología inteligente smart grid .. 55
Figura 25. Tecnología Asistentes virtuales de hogar 56
Figura 26. Placa NodeMCU con sistema de wi fi 62
Figura 27. Esquema de un NodeMCU kit .. 64
Figura 28. Instalación de NodeMCU ... 65
Figura 29. Agregar URL del driver NodeMCU 65
Figura 30. Agregar la placa de NodeMCU ... 66
Figura 31. Instalación de la placa NodeMCU ... 66
Figura 32. Activación de la placa NodeMCU ... 67
Introducción

El Internet de las Cosas, en el idioma inglés Internet Of Things (IoT) es un fenómeno que se viene desarrollando ahora. Esta gran tecnología promete ofrecernos un mundo “inteligente” conectado en su totalidad a lo que conocemos la red de redes, Internet. A medida que los objetos cada día se encuentran relacionados entre sí, su entorno y de esta forma las poblaciones están cada vez más conectadas o entrelazadas. Por ello, para que el internet de las cosas nos brinde los potenciales beneficios que trae para las nosotros, la sociedad en general y la economía en los nuevos mercados, es muy necesario tener en cuenta y abordar los problemas ya sea con respecto al tema de seguridad y privacidad o desafíos asociados directamente con IoT.

En definitiva, internet de las cosas está inmerso casi en todos los sectores tal como se muestra en el siguiente trabajo. Abordar un debate que enfrente lo que ofrece actualmente IoT y de qué manera podría mejorar o evolucionar el mundo como lo vemos, será una tarea para que los estudiantes interesados en este campo puedan seguir indagando y reforzando este tema que ya nos muestra grandes resultados dentro de la economía global, salud, agricultura, comunicación junto a la implementación a gran escala de IPv6 que en unos años dejará atrás la tecnología IPv4 mejorando la comunicación y la cantidad de objetos conectados a internet.

Para este trabajo de investigación se realizará una descripción de Internet de las cosas, así como sus aplicaciones en el mundo actual, los principios, los elementos, así como las tecnologías disponibles en los que se basa para lograr la comunicación entre objetos el cual se viene dando un gran avance.
Capítulo I

Generalidades

1.1 El internet de las cosas IoT

Redes de Telecomunicaciones y Seguridad de la Información (2012) señala que es el resultado de un primer internet evolucionado, que tiene el potencial y la capacidad de combinar datos, procesos y objetos, esto mediante sensores, redes de comunicación avanzados y procesos analíticos que parten de lo que se conoce como big data. Cada año se pone en marcha diferentes aplicaciones que van evolucionando y mejorando, de esta manera haciendo más fácil la vida de las personas. IoT mejorará el sector de la educación y salud, logrará dar potencia a las ciudades con hogares inteligentes, redes eléctricas inteligentes y por supuesto, deberá mejorar e incrementar la seguridad de la información como tarea principal.

Hasta hace unos pocos años, internet era una red donde básicamente los usuarios ingresaban a los portales web navegaba o buscaba información concreta, realizaba lo que tenía que hacer y finalizaba con ello. Actualmente internet acogió en su red a miles de dispositivos y objetos, comenzando de una gama de elementos sin límites, desde un medidor del consumo de luz que existe en todos los domicilios, sensores como los fitbit
que muchos llevamos como pulseras, hogares inteligentes que se pueden controlar con un Smartphone, tecnologías que revolucionan los diferentes sectores, todos ellos están interconectados con el resto del mundo a través de internet, ofreciendo información o anuncios, así como recibir instrucciones, etc.

Redes de Telecomunicaciones y Seguridad de la Información (2012) también indica:

El Internet de las Cosas se encuentra basado en sensores y redes de comunicaciones, así como un sistema que conduce todo el proceso y los datos que estos generan. De esta manera los sensores funcionan como los sentidos de un sistema, quienes deberán tener un bajo consumo, costo y podrán ser empleados de forma masiva, añadiendo las características de un reducido tamaño, así como una flexibilidad que permite su uso en diferentes tipos de circunstancias. Esta evolución se entiende como redes de comunicación inalámbrica potentes y seguras llamadas también M2M (máquina a máquina) que hagan posible la incorporación a las redes a las nuevas tecnologías emergentes. Finalmente, todas estas informaciones recopiladas por los sensores deben ser procesados y convertidos en información útil, aquí se conoce las técnicas de análisis de datos conocidas como Big Data.

En un futuro, las ciudades inteligentes podrán ser un gran ejemplo de lo que nos puede brindar el internet de las cosas. En ello, la comunicación de dispositivos, redes inalámbricas, sensores, así como aplicaciones que gestionan y hacen posible que estos servicios puedan ser controlados de forma eficiente y sostenible, mejorando la vida de los ciudadanos y la posibilidad de aplicar estos métodos en diferentes servicios, rubros y negocios como es el suministro de agua y electricidad, la seguridad ciudadana, el transporte, el turismo, el comercio, también nos asegura la creación de sistemas favorables que ayudaran a los gobiernos de las diferentes ciudades del mundo a brindar un mejor servicio a los ciudadanos. En necesario mencionar que además de las ciudades inteligentes los sectores donde se pueden aplicar internet de las cosas son muy variados y van en
aumento. Es el caso del sector salud, quien es uno de los sectores que mayor inversión y porcentaje tienen en la transformación al internet de las cosas; los sectores de energía agua y transporte, para conectar las empresas con sus clientes; las telecomunicaciones, los medios de comunicación o los servicios financieros que viene trabajando en sus respectivas aplicaciones que actualmente facilitan muchos trámites, pagos, retiros, trasferencias, etc. De esta manera en estos y muchos otros sectores como la educación, el entretenimiento, los videojuegos, marketing y todas las nuevas posibilidades que podrían sumarse a este cambio para lo cual debemos estar preparados. Así observamos que el Internet de las Cosas y su conexión a gran escala, figura 1.

![Imagen de IoT](image)

1.2 Inteligencia artificial

Muchas instituciones y empresas vienen estudiando todo este fenómeno del internet de las cosas y entre ellos:

Cisco (2018) menciona respecto a la inteligencia artificial:

Todos los dispositivos digitales funcionan según los programas informáticos y los datos suministrados. La inteligencia artificial implica que estos dispositivos sean capaces de pensar por sí mismos. Si se programan de manera correcta, los dispositivos inteligentes pueden evaluar los datos que reciben, y modificar los procesos o la configuración de
inmediato. Si se les proporcionan los datos suficientes, pueden “aprender” y modificar sus propios códigos según los nuevos parámetros.

Sabemos que se puede escribir software para permitir que los datos modifiquen parámetros dentro del código a fin de cambiar la configuración de la temperatura de su hogar o la velocidad con la que su hijo adolescente puede conducir el automóvil familiar. En ese sentido, IoT viene transformándose cada vez más inteligente y este hecho no pasa desapercibido por las grandes compañías.

Deloitte (2019) afirma que: Las inversiones de capital de riesgo en nuevas empresas de IoT que utilizaban inteligencia artificial (IA) han incrementado considerablemente y los principales proveedores del software de la plataforma IoT ahora ofertan capacidades integradas de Inteligencia Artificial. Por ejemplo, análisis entorno al aprendizaje automático que nos permite identificar patrones automáticamente, así como detectar anomalías en los datos generados por los sensores y las tecnologías inteligentes.

De esta manera, la empresa Gartner prevé que para el 2022 más del 80% de los proyectos IoT empresariales incluirán un componente de Inteligencia Artificial, frente al 10% que se registra en la actualidad, figura 2.

1.3 El internet

Internet es un sistema de red global multicapa que conecta cientos de millones de computadoras. Así mismo Internet no es propiedad de ninguna persona ni organización, este enorme sistema se compone de múltiples redes locales y globales que prestan servicios con fines privados, públicos, empresariales, académicos y gubernamentales. Permite el intercambio de datos entre más de cien países vinculados con Internet en todo el mundo. Esto hace que Internet sea un enorme transportador de diversos servicios y recursos de información. Algunos de estos incluyen texto y datos multimedia, correo electrónico, chat en línea, VoIP, transferencia de archivos y uso compartido de archivos, comercio electrónico y juegos en línea, todo esto conectado a nivel mundial y la figura 3 nos dan una idea de ello.

1.4 La nube

El término "en la nube" se usa en muchas formas diferentes. La nube no es tanto un tipo de red sino una colección de centros de datos o grupos de servidores conectados que se utilizan para almacenar y analizar datos, proporcionar acceso a aplicaciones en línea y proporcionar servicios de respaldo para uso personal y corporativo. Los servicios en la nube son proporcionados por diferentes organizaciones que cuentan con servidores y
permiten a sus clientes descargar data en cualquier momento, desde cualquier lugar. La figura 4 nos muestra como servidores conectados pueden almacenar grandes cantidades de información y hacer que lo podamos ver desde cualquier dispositivo.

1.5 Redes inalámbricas

Las redes inalámbricas son redes de computadoras que usan ondas electromagnéticas en lugar de los cables para transportar señales por las diversas partes de la red. El mundo rápidamente se cubre por redes que permiten que los dispositivos digitales se interconecten y transmitan. Conforme las redes digitales sigan creciendo en todo el mundo y conforme los beneficios económicos de la digitalización sigan aumentando, seremos testigos de una gran transformación digital. La transformación digital es la aplicación de la tecnología digital para proporcionar el entorno adecuado para la innovación de las empresas y la industria.

Las redes componen la base del mundo digitalizado. Existen muchos tipos de redes que se caracterizan por su tamaño geográfico, por la cantidad de dispositivos o redes que conectan y por si admiten dispositivos móviles o no. Las redes también se pueden caracterizar por su función y el propósito.
1.5.1 Red PAN.

Las redes de área personal o redes pequeñas son en las que los dispositivos inalámbricos conectados están dentro de alcance personal. Conectar el smartphone a su automóvil utilizando Bluetooth es un ejemplo de una PAN, figura 5.

![Figura 5. Red PAN conexión de dispositivos cercanos. Fuente: Cisco, 2018.](image)

1.5.2 Red LAN.

Las redes LAN “Local Area Network”, es decir, red de área local. Normalmente son redes de un área geográfica pequeña o local, como una vivienda, una pequeña empresa o un departamento dentro de una gran corporación. Las redes LAN pueden conectar dos o más dispositivos, como computadoras, impresoras y dispositivos inalámbricos, figura 6.

![Figura 6. Red LAN conexión de área local. Fuente: Estela, M.,2018.](image)

1.5.3 Red WAN.

Se denomina red WAN (Siglas del inglés: Wide Área Network, o Red de Área Amplia) a las redes de área geográfica amplia, esta red incorpora diversas redes LAN o
redes de tamaño menor que se encuentran interconectados en diversos niveles y mayores tasas de transmisión, figura 7.

1.6 El futuro del internet de las cosas: IPv6

En definitiva, IPv6 es la próxima generación del estándar de dirección de Protocolo de Internet (IP), complementará y eventualmente reemplazará a IPv4, el protocolo que muchos servicios de Internet todavía usan hasta el día de hoy.

Net Work World (2016) indica: Grandes empresas del campo de las TICs como Cisco y Gartner vienen pronosticando algo que cada día es más evidente, la cantidad de objetos conectados a internet por día va en aumento y quedan menos direcciones IPv4, Gartner estima que para el 2020 habrá más de 26 millones de dispositivos IoT conectados a internet. Cisco con un pronóstico más ambicioso, considera que existirán 50 millones de dispositivos interconectados en ese año. Actualmente, IPv4 es utilizado a nivel mundial conectando millones de objetos inteligentes, pero tiene una capacidad y solo dispone de 4,3 millones de direcciones posibles. A pesar que no todos los dispositivos IoT necesiten una dirección IP, pero la realidad actual es que IPv4 solo tiene capacidad para menos del 20% de los objetos inteligentes que actualmente existen tal como lo mencionan grandes analistas como Gartner. A diferencia IPv6 contará con 340 billones de billones de billones
de direcciones. Incluso si IoT llegara a cumplir las expectativas de Cisco, debería ser suficiente para los próximos años. Aun así, el cambio a IPv6 es pequeña, con un pequeño incremento lo cual se espera cambie en los siguientes años (párr. 1).

En el año 2011 se agotaron las direcciones IPv4, registro realizado por la Autoridad de Asignación de Números en Internet (IANA), debido a ello las empresas proveedoras de servicios de internet vienen desplegando la nueva tecnología IPv6 en todas sus redes para usuarios nuevos y existentes.

1.6.1 Como funciona una dirección IPv6.

Para entender esta parte, una dirección IP es como el número de DNI de una persona, única que lo identifica en cualquier parte y es propio de alguien. Cuando un usuario se conecta a Internet mediante un dispositivo, actualmente una computadora, un Smartphone, una Tablet, todos estos dispositivos ya tienen asignado una dirección IP. Este sistema de direccionamiento que utilizamos desde el nacimiento de Internet, es llamado IPv4. La razón por la cual tenemos que reemplazar este sistema de IPv4 con el IPv6 es justamente porque Internet se está quedando sin espacio de direcciones IPv4. En ese sentido, IPv6 ofrece actualmente una gran cantidad de direcciones IP los cuales podrán ser suficientes para soportar los millones de objetos conectados a internet en un futuro próximo. A continuación, se muestra las cantidades de IP disponibles en IPv4 y su representación en la figura 8 y la figura 9 para las direcciones de IPv6. Veamos:

- IPv4: 4,294,967,296 direcciones = 2^{32}
- IPv6: 340,282,366,920,938,463,463,374,607,431,768,211,456 direcciones = 2^{128}
IPv6.mx (2018) nos explica que: Para que pueda existir esta gran cantidad de direcciones IPv6 es necesario entender que las direcciones IPv6 estas constituidas por 8 secciones de 16 bits, estas apartadas por dos puntos. De esta manera en cada apartado de 16 bits, tenemos 2^{16} variaciones. Si usamos numeros decimales entre 0 a 65,545 obtendriamos una direccion de IP muy grande; por ello, para facilitar su comprension es que las direcciones IPv6 se encuentran presentadas con notacion hexadecimal, 16 caracteres diferentes: 0-9 y a-f.

1.6.2 Características y tipos de dirección IPv6.

Moreno, Santiago y Fabero (2018) nos hablan sobre el direccionamiento del protocolo IPv6, señalándolo de la siguiente manera:

Unicast:

Logra identificar un solo host dentro de la red (Uno a uno).

En unicast toda la información enviada a esta dirección, se entregará única y exclusivamente a dicha dirección IP.

Multicast:

Lo logra identificar a todo un grupo de host (uno a varios).

La data enviada a una dirección multicast, podrá entregarse a todos los hosts que se encuentren registrados con este tipo de dirección IP.

Anycast:

Logran identificar todo un grupo completo de hosts (de uno al más cercano).

En este tipo de direccionamiento anycast, solo se entrega a la dirección establecida con una dirección IP de anycast, de preferencia al más cercano en consecuencia del protocolo de routing.

Moreno et al. (2018) de igual forma explica el ámbito y el formato de los tipos de dirección en IPv6:

Ámbito:

Se podrá determinar hasta qué punto la dirección IP tiene validez.
Enlace local (Link-local): Por lo general valido para las redes LAN que se encuentran a la interfaz de esta red. Se les puede identificar por tener FE::/10 o FEBF::/10 dentro de su prefijo de formato.

Formato: El prefijo de estos formatos pueden ocupar hasta 10 bits: 1111 1110 10 (FE80::/10). Lo restante a los 64bits son 0, así mismo tiene un identificador de host (64bits).

Ejemplo: **fe80::2e81::ff:fee9:64bb/64**

Sitio local (Site-local): Característico del RFC 4193 Unique Local Address, solo funciona con direcciones unicast privadas, estas pueden estar formados por una o distintas redes interconectadas normalmente por un router. Como ejemplo podemos tomar un campus universitario en el cual pueden usarse intranets jerárquicos, pero solo dentro de espacio, mas no fuera de él.

Formato: Tienen un prefijo de FC00::/7, donde se le suma un bit de (0) o (1) el cual indica si la gestión es global o local.

Identificador de sitio (40 bits). Se selecciona aleatoriamente para no caer en colisiones.

Tiene un identificador de subred (16 bits).

Tiene un identificador de host (64bits)

Global:

Las direcciones unicast globales están definidos dentro de RFC 3587, tienen la opción de autoconfiguración y son válidos en todo internet. Reconocidos por tener 2000::/3, 3FFF::/3 como prefijo de formato.
Formato:

Tiene un prefijo global de (48bits). Los primeros tres bits son 001, el cual permite 2^{45} (ISP) diferentes. Lo que lo hace relevante en el encaminamiento global.

Tiene un identificador de subred (16bits), 65536 subredes por organización.

Tiene identificador de host (64bits).

1.6.3 Sencillez y ahorro a futuro de IPv6 frente a IPv4.

Cuando Microsoft inicia a trabajar con IPv4 y con ello todas las iniciativas que estuvieran en referencia con la computación en la nube, tuvieron que romper paradigmas y prever que las direcciones IPv4 serían limitadas con el tiempo y debido a ello, hoy pagan un precio alto.

Internet Society (2018) explica: IPv4 se vuelve un costo innecesario y un activo especulativo. Un departamento de TI o CIO que se enfrenta a la compra de direcciones IPv4 tiene razones para preguntar si el gasto vale el valor. La respuesta corta es que cada vez no lo es. Incluso si no se enfrenta a esa decisión, la compañía mejoraría, a largo plazo, vender el espacio de direcciones que tiene y utilizar el dinero para financiar la implementación de IPv6, conectándose a un ISP ascender que usará los mecanismos de traducción para conectarse al IPv4 restante. Para aquellas empresas y redes que aún no han realizado la actualización, el mejor momento para iniciar el proceso de implementación de IPv6 es ahora y hay muchos recursos disponibles en línea para ayudar.

Si las empresas pudieran informarse adecuadamente, entenderían que IPv6 es mucho más sencillo que IPv4.
Por ello, Martínez (2018) nos indica:

Es imprescindible “desaprender IPv4” para poder realizar esa auditoría de la red, o caeremos en muchos errores, ya que el despliegue de IPv6 puede requerir cambios importantes en nuestra infraestructura, básicamente un importante replanteo de la misma en muchos aspectos. Por eso es fundamental una capacitación por parte de profesionales que tengan experiencia en este tipo de redes, y que nos garantice todos los conocimientos y recursos necesarios. Asimismo, una vez comprendida la red, es necesario realizar un plan de direccionamiento detallado, que es además imprescindible para poder solicitar los recursos de Internet adecuados a nuestro caso, al RIR correspondiente. Estos recursos, en IPv6 son cantidades astronómicas de direcciones, y ya no podrán ser gestionadas con una hoja de cálculo o documento de texto, sino que requeriremos un gestor de direcciones (IPAM, IP Address Management). Finalmente, el estudio de la red y de las aplicaciones, así como el plan de direccionamiento, definirá las posibles alternativas para iniciar la transición de nuestra red a IPv6, y si necesitamos el apoyo de mecanismos de transición y en que partes de la red y para que servicios y aplicaciones.

1.6.4 Implementación de IPv6 en las grandes industrias.

La implementación de IPv6 se ha venido desarrollando con la crisis que manifiesta la cantidad de IPv4 que no puede mantener un mercado y abastecer los miles de aparatos que necesitan de una IP.
En ese sentido Vector ITC (2017) señala: El hecho de que el Internet de las Cosas venga desarrollándose profundamente, hace algunos años años que las empresas se encuentren en diferentes niveles en cuanto a la fabricación y a la integración de esta tecnología. Es más, algunas empresas ya vienen percibiendo importantes beneficios tangibles del IoT, mientras que también existen otras que sólo están explorando y tratando de entender lo que significa y lo que puede lograr para ellos en el futuro.

Internet Society (2018) informa que: Reliance JIO, en India, comenzó a implementar IPv6 después de que su registro local de Internet se quedara sin espacio de direcciones IPv4. La dependencia se ha visto obligada a comprar espacio de direcciones IPv4 como resultado, pero por razones de negocios prefiere no hacerlo. A partir de febrero de 2017, Reliance informó que aproximadamente el 90% de sus clientes de LTE están utilizando IPv6 y representan aproximadamente el 80% de su tráfico. Esto es impulsado, dicen, por sus principales socios de contenido, Google, Akamai y Facebook, que entregan su contenido solo utilizando IPv6 en esa red. Reliance activó más de 200 millones de suscriptores con conectividad IPv6 en solo 9 meses, entre septiembre de 2016 y junio de 2017.

Verizon Wireless implementó de forma proactiva IPv6 a pesar de que tenían una red IPv4 existente. Según los informes, tenían al menos 70 instancias internas del mismo espacio de direcciones privadas y se encontraban gastando esfuerzos y dinero en la complejidad de la red resultante; La implementación de IPv6 fue una solución que simplificó su red y redujo el costo de operación. Más del 80% del tráfico de Verizon Wireless a los principales proveedores de contenido en línea ahora utiliza IPv6. T-Mobile USA se encuentra en el proceso de desactivar IPv4 dentro de su red móvil, operando solo IPv6. Por su parte, Facebook informa que están en proceso de apagar IPv4 dentro de sus centros de datos; IPv4 e IPv6 desde el exterior llegan a sus balanceadores de carga, y
detrás de ellos solo está IPv6. El efecto ha sido mejoras operativas e innovación en su software. Otras compañías, incluyendo LinkedIn y Microsoft, han declarado de manera similar la intención de desactivar IPv4 dentro de sus redes (Internet Society, 2018).

Las universidades también han sido ubicaciones de prueba de implementación temprana y adoptantes tempranas. Virginia Tech, por ejemplo, implementó IPv6 en una ubicación de prueba en 2004 y luego lo expandió en todo el sistema de su campus. En 2016, informaron que el 82% de su volumen de tráfico usaba IPv6. De manera similar, el Imperial College London informa que comenzaron a experimentar en 2003, aseguraron el servicio comercial en 2010 y en 2016 tenían SLA para el servicio IPv6 equivalente a su servicio IPv4, con un promedio del 20-40% de su tráfico. Curiosamente, informan que una proporción significativa de sus colaboraciones de física de alta energía, como con el CERN, dependen de IPv6 al igual que el uso masivo que va en aumento a nivel mundial, figura 10 (Internet Society, 2018).

![Figura 10](Protocolo_IPV6_2016.png)

Figura 10. Porcentaje de usuarios con IPv6 por países. Fuente: Protocolo IPv6, 2016.

1.6.5 IPv6 a nivel mundial en el 2018.

Internet Society (2018) indica que: La implementación de IPv6 continúa aumentando en todo el mundo. En los seis años transcurridos desde el lanzamiento mundial de IPv6, niveles de despliegue de IPv6 en redes y proveedores de servicios en todo el mundo han
aumentado dramáticamente tal como se muestra en la figura 11. 25% de todas las redes conectadas a Internet anuncian la conectividad IPv6. Google informa que 49 países realizan más del 5% del tráfico a través de IPv6, con nuevos países que se unen todo el tiempo y 24 países cuyo tráfico IPv6 supera el 15%.

1.7 Computación en la niebla

Banafa (2015) en una publicación, Internet de las cosas (IoT) representa una extraordinaria transformación de la manera en que nuestro mundo interactuará muy pronto. Así como la World Wide Web conectó los ordenadores a la red, y la siguiente evolución conectó a las personas a Internet y a otras personas, Internet de las Cosas parece estar preparado para interconectar dispositivos, personas, entornos, objetos virtuales y máquinas, de un modo que solo los escritores de ciencia ficción podrían haber imaginado. En pocas palabras, Internet de las cosas representa la convergencia de la conexión de personas, objetos, datos y procesos y está transformando nuestras vidas, negocios y demás.

Con respecto a la Computación en la Niebla, Banafa (2015) indica: El término computación o informática en la niebla también se conoce como computación Edge, que esencialmente significa, en lugar de alojar y trabajar desde una nube centralizada, los sistemas en la niebla funcionan en los extremos de las redes. Esa
concentración significa que los datos se pueden procesar localmente en dispositivos inteligentes, en lugar de enviarse a la nube para su tratamiento. Es uno de los posibles enfoques de Internet de las cosas.

Con una cantidad cada vez mayor de sensores que utiliza Internet de las cosas, regularmente existe la necesidad de almacenar los datos de los sensores de manera segura y más cercana a donde se pueda analizar la información generada. Estos datos analizados luego se pueden usar de manera rápida y efectiva para actualizar o modificar los procesos dentro de la organización.

Se muestra un ejemplo de una ciudad inteligente y la forma en que se procesa los datos de los sensores. La niebla se encuentra en el perímetro de una red empresarial o corporativa. Los servidores y los programas permiten que los datos se procesen previamente para su uso de inmediato. Luego los datos procesados anteriormente se pueden enviar a la nube para obtener un análisis informático más exhaustivo si es necesario, tal como se muestra en la figura 12.

![Figura 12. Centralización de computación en la niebla. Fuente: Cisco, 2019.](image-url)
Capítulo II

Orígenes del internet de las cosas

2.1 Orígenes

Para conocer el origen y como es que el termino Internet de las cosas ingresa a la comunidad tecnologica Internet Society (2015) señala: El término Internet de las Cosas “Internet of Things” por sus siglas en inglés (IoT) fue acuñado por primera vez en el año de 1999 por Kevin Ashton en una conferencia para Procter & Gamble (P&G), Ashton explica de qué manera los objetos de nuestra vida cotidiana se pueden conectar a internet mediante sensores. Así, Ashton explicó poder conectar a una red de internet las etiquetas de identificación mediante radiofrecuencia (RFID), un método que utilizan las cadenas corporativas para el monitoreo y seguimiento de sus mercancías sin la necesidad de intervención humana. Internet de las cosas actualmente es un término popularizado para describir las nuevas y modernas tecnologías que nos sorprenden en artículos de uso diario.

Así mismo, el término “internet de las cosas” considerado relativamente nuevo, da a conocer como computadoras conectados a una red de internet ayudan mucho en el monitoreo y control de diferentes dispositivos, que de por sí ya existían durante décadas, pero se dan a conocer con mayor fuerza con el concepto de internet de las cosas. Tal es el
caso que en la década de 1970 ya existían dispositivos con los que podíamos, por ejemplo, monitorear medidores de una red eléctrica en forma remota. Por los años de 1990 grandes avances para la tecnología inalámbrica permitió la aparición de soluciones para las corporaciones e industrias llamadas “machine to machine” (2M2) para operar diferentes equipos sin la necesidad de intervención humana. Muchos de estas tecnologías 2M2 fueron construidas con tareas específicas mas no conectadas a una red con su protocolo de internet (IP).

Para tener noción de Internet de las Cosas IoT, a continuación, tenemos una pirámide donde en la primera base nos muestra el primer avance como es el caso de tener una etiqueta RFID que nos permite monitorear y darle un seguimiento al objeto. Para el segundo nivel, utiliza la tecnología de (GPS) el cual ayudar a saber la ubicación, posición o la trayectoria del objeto durante su traslado. Un nivel más arriba el objeto podrá comunicar su estado, así como sus propiedades. Por último, el objeto se dota de contexto, lo que permitirá pueda ser consciente de su entorno en base a sensores, tal como se muestra en la figura 13.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figura13.png}
\caption{La evolución de un objeto inteligente. Fuente: Sensor Telemetry Accenture, 2005.}
\end{figure}
2.2 Definiciones diferentes

Así como en el siglo XX tuvimos la revolución industrial, a inicios del siglo XXI el mundo fue testigo de la revolución de la información. Grandes tecnologías fueron apareciendo, es el caso del TCP/IP, GPS, HTML y actualmente el Wi-Fi el cual nos permite navegar por toda la red viendo gran cantidad de información y contenido en las páginas web. Otro de las apariciones fue el comercio electrónico (e.commerce), empresas como Amazon y vienen apareciendo cada día muchos más; a su vez, cambiaron totalmente la experiencia de compras y ventas a nivel mundial. Esta más que claro los grandes cambios que traje IoT junto con los avances en las telecomunicaciones que nos facilitado mucho la vida.

Al día de hoy tenemos millones de sensores y dispositivos conectados a internet en diferentes objetos ya sea a redes inalámbricas o redes de ethernet, con precios baratos y accesibles a la economía de la población. Es un punto donde los objetos ya no solo se comunican con nosotros, sino que también son capaces de comunicarse entre ellos y tienen la inteligencia para hacerlo.

Internet de las cosas (IoT) traerá un cambio a nuestro mundo, cada día existe mayor cantidad de dispositivos conectados a internet y va en aumento, estos dispositivos generan servicios, comunicación o comodidad con el simple hecho de estar conectado a internet. Muchos de estos llamados “objetos inteligentes” no necesitan más ser operados por humanos y se sigue trabajando en ello. Tenemos hogares inteligentes, vehículos, Smartphones, etc.

Para esta investigación definiremos el término de IoT de acuerdo a algunas asociaciones, empresas que se desempeñan a gran escala en este campo tecnológico como es el siguiente caso:
Cisco (2018) que menciona: El Internet de las cosas IoT es la conexión de millones de dispositivos inteligentes y sensores conectados a Internet. Estos dispositivos y sensores conectados recopilan y comparten datos para que muchas organizaciones las usen y evalúen. Estas organizaciones incluyen empresas, ciudades, gobiernos, hospitales y personas. IoT ha sido posible, en parte, debido a la llegada de procesadores asequibles y a las redes inalámbricas.

Asimismo, Internet Society (2015) señala que, Internet de las Cosas (IoT) es toda una infraestructura mundial conectada a internet que proporciona servicios avanzados mediante la conexión de dispositivos tanto físicos como virtuales. De esta manera la identificar, la manera de adquirir y procesar datos, así como la gran capacidad de comunicación, internet de las cosas busca garantizar el estricto cumplimiento en los requisitos de seguridad y privacidad que son necesarios.

Para el propósito de este trabajo el término “El internet de las cosas IoT” como concepto general, se refiere a la amplia conectividad de redes, así como la capacidad de conectar dispositivos, objetos, sensores y todo aquello unido a la red que no está considerado como una computadora. Estos “objetos inteligentes” podrán funcionar con una mínima participación humana para desarrollar y producir grandes cantidades de data, donde muchos de ellos tienen conexión a internet para la recolección remota, análisis y gestión de datos.

2.3 Características del internet de las cosas

En este apartado es necesario entender las características fundamentales de internet de las cosas; por ello, se menciona y explica cada uno de ellos según Sanchez (2017) quien menciona las siguientes características:
Interconectividad:

En el contexto de Internet de las Cosas, todo debe estar interconectado a los dispositivos inteligentes con infraestructura global de la información y la comunicación. Son inteligentes porque de una u otra forma están conectados. Estos objetos pueden ser conectados inalámbricamente o por cables. Por eso en el Internet de las cosas la conexión inalámbrica es una de las mejores alternativas.

Servicios relacionados con objetos:

El Internet de las Cosas tiene la capacidad de suministrar servicios con relación a objetos que cuenta con restricciones como la protección a la privacidad y coherencia semántica entre dispositivos físicos y su correspondiente a dispositivos virtuales. Las tecnologías dentro de las restricciones de objetos evolucionaran en un mundo físico y de la información.

Heterogeneidad:

Los objetos inteligentes de Internet de las Cosas logran ser heterogéneos dado que se aprecian en distintas plataformas hardware y redes. Así mismo, podrán comunicarse con otros dispositivos o plataformas de servicios a través de las redes.

Cambios dinámicos:

El estado de los dispositivos varía dinamicamente, así tenemos por ejemplo conectado/ desconectado, apagado/encendido, además del contexto como es la velocidad o ubicación donde se encuentre. Otra de las características son las acciones automáticas que pueden realizar para que en un futuro no solo puedan procesar información, si no también poder auto configurarse, automantenerse y autorepararse.
Escala enorme:

La cantidad de dispositivos IoT es cada día mayor, por lo cual se prevé que el porcentaje de comunicación requerido por estos dispositivos será mucho mayor que la comunicación existente entre humanos.

2.4 Modelos de comunicación IoT

Desde un panorama general es importante preguntarnos cómo es que se procesan y comunican estos objetos inteligentes en términos de comunicación. El Comité de Arquitectura de Internet (IAB), quien publica un documento que servirá como guía para el establecimiento de redes en objetos inteligentes (RFC 7452) describiendo así, cuatro modelos de comunicación que emplean todos los dispositivos que pertenecen a IoT e incluso en el futuro podrían aparecer más. De esta manera a continuación se presenta las principales características de cada modelo.

2.4.1 Comunicación de dispositivo a dispositivo.

Para este tipo de comunicación:

Internet Society (2015) publicó: El modelo de comunicación dispositivo a dispositivo muestra a dos o más dispositivos que logran conectarse y comunicarse entre sí, esto sin la necesidad de un servidor de aplicaciones intermediario. Estos dispositivos logran comunicarse sobre muchos tipos de redes, entre ellas las redes IP o la Internet. Sin embargo, para realizar comunicaciones directas de dispositivo a dispositivo, suelen utilizar protocolos como Bluetooth, Z-Wave o ZigBee.

Para la comunicación e intercambio de mensajes en IoT, de dispositivo a dispositivo es necesario un protocolo de comunicación para que exista dicha función. En la mayoría de los casos, actualmente este tipo de comunicación es usado por aplicaciones que apoyan con la automatización de hogares, mediante pequeños packs o programación de datos que
subjetivamente trabajan con bajas tasas de transmisión. Entre los usos de dispositivos IoT encontramos interruptores, temperatura, cerraduras, enviando pequeñas proporciones de información.

El problema de este tipo de comunicación en los usuarios es que para que exista y funcione el protocolo de comunicación de dispositivo a dispositivo nos obligan a selecciones dispositivos que pertenecen a la misma familia o utilizan el mismo protocolo. Por ejemplo, Z-Wave no es compatible con los dispositivos de ZigBee. Por eso en la Figura 14 se muestra este tipo de comunicación.

![Figura 14. Comunicación de dispositivo a dispositivo. Fuente: Tschofening, H., 2015.](image)

2.4.2 **Comunicación de dispositivo a la nube.**

Para este tipo de comunicación dispositivo a la nube.

Internet Society (2015) lo menciona de la siguiente manera: El gadget de la IoT logra conectarse de manera directa a un servidor en la nube, como entre otras cosas un suministrador de servicios de apps que permita intercambiar data y vigilar el tráfico de mensajes. Mediante este proceso, se lograra aprovechar este tipo de comunicación que ya conocemos como es el caso (las conexiones Wi-Fi o Ethernet cableadas tradicionales) para crear un tipo de conexión entre los dispositivos y la red IP, que después se conecta con los servicios que ofrece la nube.
Este tipo de comunicación se usa por algunos gadgets electrónicos de marca conocida y de consumo para la IoT, entre los que mas destacan esta el Learning Thermostat de Nest Labs y el SmarTV de Samsung. En la situacion del Learning Thermostat, el gadget puede transmitir los datos a un banco de información en la nube donde se tienen la posibilidad de conocer el gasto de energía dentro del hogar. Por otro lado, este tipo de conexión en la nube facilita que podamos acceder al control del termostato en forma remota, por medio de un smartphone o una plataforma de trabajo web, y además soportar las diferentes actualizaciones del programa de la misma forma que se sugiere en la figura 15.

Sin embargo, al intentar integrar gadgets de diferentes desarrolladores tienen la posibilidad de aparecer inconvenientes de interoperabilidad. Frecuentemente el gadget y el servicio en la nube puedes usar la misma tecnologia y tener el mismo proveedor. Si entre el gadget y la asistencia en la nube se usan protocolos de data, el usuario muchas veces puede quedar como dependiente a un servicio en la nube concreto, lo que limitaría la utilización de otro servicios alternativos. Esto por lo general mas conocido como “dependencia de un proveedor” (vendor lockin), algo que comprende otros tipos de relacion con el proveedor, como entre otras cosas la propiedad y el ingreso a los datos.

2.4.3 Comunicación de dispositivo a puerta de enlace.

Blue Service (2018) explica: Para la comunicación de dispositivo a puerta de enlace, los dispositivos principales necesitan conectarse a un dispositivo que funcione como intermediario que le permita acceder a los servicios ofrecidos en la nube. Mayormente este tipo de comunicación implica la necesidad de adquirir softwares y/o aplicaciones que funcionen como puerta de enlace local entre el dispositivo y el servicio en la nube.

De esta manera la puerta de enlace brinda seguridad y otras funciones que le permiten cumplir su rol entre las que se conoce la traducción de datos y protocolos. Caso particular de los Smartphones que mediante aplicaciones se conectan y comunican con los dispositivos IoT, teniendo acceso a un servicio de la nube, en la figura 16 podemos apreciar mejor este tipo de comunicación.

![Diagrama de comunicación de dispositivo a puerta de enlace.](image)

2.4.4 Comunicación intercambio de data mediante back-end.

El modelo de intercambio de datos a través del back-end funciona gracias a una estrategia de comunicación entre diferentes objetos inteligentes que pueden ser revisados por diversos usuarios, algo que ya estamos llegando e incluso sobrepasando en estos tiempos. Así el usuario mediante un aplicativo puede acceder a datos subidos por otros sensores.
Internet Society (2015) indica: Este modelo de comunicación tipo ‘dispositivo único a la nube’, ha llevado a las diferentes empresas obtener gran cantidad de información recolectada “los dispositivos de la IoT suben datos a un único proveedor de servicios de aplicaciones”. De tal forma esta arquitectura puede intercambiar datos a través de back-end permitiendo agregar datos y analizar los datos recopilados.

Para este tipo de comunicación tenemos por ejemplo la aplicación Map My Fitness, uno de los dispositivos que va en aumento por la gran cantidad de usuarios que lo utilizan, lo que hace este dispositivo es recopilar datos sobre el estado físico que nos servirá para un futuro análisis. Empezando por los Fitbits hasta lo que ofrece Adidas que muestra cómo puede analizarse datos en un dispositivo desde diferentes sensores, se muestra su complejidad en la Figura 17.

2.5 Sensores y actuadores IoT

2.5.1 Como se conectan los dispositivos IoT a la red.

Un sensor debe estar conectado a una red para que los datos recopilados puedan guardarse y compartirse. Esto requiere una conexión Ethernet cableada o una conexión inalámbrica a un controlador. Los controladores son responsables de recopilar datos de los sensores y proporcionar conectividad hacia la red o Internet. Los controladores pueden llegar a tener la capacidad de realizar tareas inmediatas o enviar de manera inmediata datos.
a una computadora con mejor capacidad para su análisis. Este equipo mucho más potente puede estar en la misma red LAN, al igual que el controlador, como también puede ser accesible mediante una conexión a Internet.

Los sensores a menudo funcionan junto con un dispositivo denominado actuador. Los actuadores toman la entrada eléctrica y transforman la entrada en acción física. Por ejemplo, si un sensor detecta calor excesivo en una sala, el sensor envía la lectura de temperatura al microcontrolador. El microcontrolador puede enviar los datos a un actuador, que a su vez encendería el aire acondicionado.

Los sensores ahora están en todas partes, y recopilan y transmiten cantidades enormes de datos. Los datos generados pueden almacenarse y analizarse en una fecha posterior, o se pueden analizar y utilizar inmediatamente, ver figura 18.

![Figura 18. Funcionamiento de sensores y actuadores. Fuente: Cisco, 2019.](image)
Capítulo III

Impacto del internet de las cosas

3.1 Adopción de IoT en la industria

Las empresas Gartner y Forrester consideran el IoT como tendencia emergente; según estiman, dentro de cinco a diez años el mercado habrá acogido este crecimiento y que a su vez está tendencia habilitará dando paso a más tecnologías que coincidan llevar y seguir desarrollando genuinamente tecnologías IoT.

Una de las instituciones con mayor dedicación a las nuevas tecnologías es Fundación Bankinter (2011) que afirma: El internet de las cosas es más vanguardista, pero es una realidad y continúa evolucionando. La comunicación de máquina a máquina a través del internet es una realidad, tiene buena acogida y sostenibilidad y continúa evolucionando. Gran parte de la industria están considerando lo útil que es la información que se obtiene de los sensores, expandirla a través de internet y que su respuesta se automatice. Tiene en común la eficacia que se promueve por los sistemas de autocorrección. Hay infinidad de ejemplos que está relacionado con todos los sectores
como la energía (edificios inteligentes) así también la automoción (valoración del motor que se interrelaciona con instalaciones centrales a través de redes de satélite), pasando por una inspección que califica el buen estado a través del cual hay una introducción de constantes vitales que hace posible que resulten programas personalizados que emanan del software que es para el correcto funcionamiento y la gestión de las enfermedades. Este giro lleva la capacidad del internet a un nuevo nivel, en este capítulo se ofrece la visión de los avances relacionados con ella, en profundidad.

Es interesante observar como el internet de las cosas está modificando el área de los patrones de negocio. La tendencia revolucionaria con la del IoT observan que es importante que intervengan todas las asociaciones colectivas teniendo especial atención de la creación de valor por parte de los emprendedores. A pesar que las grandes empresas son las que asientan las bases de la infraestructura tecnológica, los que emprenden son los agentes que transforman nuestra sociedad los cuales son los que impulsan la tendencia vanguardista. Siendo capaces de traducir costes resultados en creación de valor.

Internet de las Cosas IoT está cada vez más inmerso en los diferentes sectores que día a día van evolucionando y transformando sus tecnologías a las IoT y podemos ver la figura 19 que nos muestra el gasto previsto en los diferentes sectores del IoT para el 2020.

Ensoñemos una urbe del futuro, una ciudad tecnológica, donde los teléfonos móviles abren y cierran puertas donde los sensores están hasta para detectar fugas de agua, etc. Imaginemos, el uso del IoT se ha aplicado a las industrias en sus distintas vertientes, como la agrícola, sanitaria, logística, que a su ver permite conectar todo tipo de máquinas que monitorean y controlan de manera inteligente. Tales industrias se han desarrollado en menor o mayor grado en el terreno del IoT, sin embargo, tienen como objetivo común el logro de un alto grado de eficacia, reducción de costes, mejorar la toma de decisiones, el ahorro de energía y proteger el medio ambiente.

Sintetizando este segmento de la investigación, gran parte de diferentes sectores de las organizaciones comienzan a notar la importancia del IoT lo que los lleva a incorporarlo a sus propios negocios. Pero si bien es cierto, como se observa en nuestra investigación, la incorporación a una red los productos tradicionales, supone una complicación importante tanto desde una perspectiva técnica como desde el punto de vista de las empresas, lo cual debemos tratar de resolver en estos años donde la tecnología avanza a pasos agigantados y los países cada vez invierten más en tecnologías IoT. Esto en un mundo globalizado nos ayuda a entender, quien no invierta en actualizar la manera como ofrecen los servicios mediante IoT, quedarán con un servicio desfasado para los usuarios finales, convirtiendo lo que podrían ser las ganancias en pérdidas, figura 20.

Figura 20. Países con mayor porcentaje de aplicación IoT. Fuente: Quartz, 2018.
3.2 El internet de las cosas en la logística

El Internet de las cosas está cogiendo terreno en todos los campos empresariales, por ello debemos mencionar los principales sectores donde se viene desarrollando y de qué manera ayuda efectivamente a que los servicios mejoren.

Prodware (2014) señala que: La dinamica que se genera en el tramo de ir y venir por países, transportes , aereos, terrestres y maritimos oculta un 10% del precio final y aproximadamente la mitad de las emiciones del CO2 que contamina todo el planeta.Un estudio citado por la revista Science referido por el diario El País (España) en un artículo referido a este asunto, la logística mueve 45 mil, millones de euros por año que supone el 15% del PBI mundial lo que denota de la importancia de esta actividad, por ello decidimos investigar masa fondo como la IoT se viene desarrollando en este sector (párr. 2).

Por otra parte, Pajares (2016) nos menciona: el porvenir del internet de las cosas tendrá una dependencia de la capacidad que tengan las empresas para establecer y pactar los protocolos y los lineamientos que permitirán el trabajo en forma cooperativa con las diferentes partes de la empresa de suministros. Se necesitará de un sistema de software idóneo y capaz para traducir la data que resulte de las diferentes fuentes, así como tramitar de forma segura, distribuyendo información y haciendo fácil su acceso para los procesos que se ejecutan en la nube. Se prevé nuevas perspectivas para el campo de la logística con respecto a la cadena de suministros, tanto como para apps informáticos y los diferentes sistemas que gestionan la información.

Los daños y pérdidas en mercancías como los alimentos, productos con frío controlado, mercancía de alto valor, o productos industriales, junto con los daños objetivos provocados por el mal nivel de servicio al cliente son una lacra que sufre la logística de manera endémica; por ello:
Gisbert (2018) menciona: Es ahí donde el IOT puede tener un papel muy interesante, facilitando la trazabilidad y el control de las operaciones desde cualquier punto del planeta y en cualquier situación e incluso dispositivo, basándose en la conectividad particular de cada dispositivo relacionada con cada operación y la gestión adecuada de la información que proporciona esta conectividad en cada caso y con una estructura que facilita la toma de decisiones de manera remota y objetiva.

Es posible realizar el seguimiento, monitorear, contabilizar y analizar, con los objetos conectados a la red, a partir del cual puede ser posible la inserción de estrategias o planes que faciliten abordar los problemas de las empresas como, reducir el desperdicio, coste, el tiempo de respuesta y buscar un grado mayor de eficacia y productividad el cual es uno de los retos de vital importancia que las empresas enfrentan en la actualidad. Una gran cantidad de industrias ve oportunidades en la conectividad de todas las áreas, para nuevos negocios, generando alteraciones en los campos de competencia actual, como ejemplo los nuevos proveedores podrían hacerse cargo del negocio lucrativo de reparación y mantenimiento de empresas de ingeniería.

3.2.1 Mejoras en el sector de logística.

Al respecto un miembro de la empresa Beetrack menciona lo siguiente:

Honorato (2016): Algunas mejoras que la IoT realizó para la parte logística el cual se considera necesario conocer en su aplicación, en la administración y gestión logística se sostiene en términos como es el sentir y hacer sentido, información que se trabajó en colaboración entre DHL y Cisco.

Sentir, refiere a monitorear distintos aspectos de la cadena de suministros mediante los medios y las tecnologías necesarias; “Hacer Sentido” en cambio se concentra en el manejo de grandes paquetes de data que se generan como resultado de las distintas
operaciones a diario, a su vez renovar tales datos en información que pueda ayudar a tomar decisiones con soluciones informadas.

3.2.2 IoT y gestión de flotas de transporte.

Tanto la medición como el seguimiento en el sector logístico, toda la información que puedan generar los conductores y vehículos serán de gran alcance para gerentes quienes tienen como objetivo la mejora y eficacia operativa de sus empresas dedicados a este servicio.

Este proceso y software integrados a IoT facilitara información valiosa y clave de las operaciones de transporte. Dicho de otra manera, toda la información obtenida como datos, numero de entregas a tiempo, resultados electrónicos de entregas oportunas, así como alertar de cualquier problema en curso, en tiempo real.

3.2.3 Reducción de costos y mayor eficiencia.

Posee gran impacto desde el punto operativo, permitiendo mejorar el trabajo de cada vehículo que puede coincidir con las entregas y el mejor desempeño del conductor. Por otro lado, también los administradores de logística podrán mejorar sus resultados de gestión logística, gracias al uso de estos equipos, optimización tiempo en la rotación de inventarios y evitar equivocaciones en los envíos.

Como ejemplo, actualmente existen sensores que ya tienen integrado tecnología de IoT, esto le permite saber cuándo un empresa o tienda tiene el stock bajo en ciertos productos, haciendo pedidos de abastecimiento en forma automática con algún centro de distribución cercano. Así, medimos una mejor experiencia del usuario o cliente y a la vez la reducción en el coste de la gestión de inventario.
3.2.4 IoT y los beneficios operacionales.

Es imprescindible tener visibilidad en todo el proceso logístico, debido a que proporciona información vital para una toma de decisiones efectivas, con un menos tiempo y con servicios mejor adecuados.

Tener acceso en tiempo real de las entregas, para la gestión logística es una de las grandes ventajas que puede proporcionar IoT a las industrias. Es muy importante que las cadenas de suministro estén interrelacionados a través de plataformas en la nube, lo cual será vital para cualquier administrador.

Por medio de seguimiento e informes en tiempo real que facilita IoT los administradores de cadena de abasto les es posible estar un paso por delante de posibles problemas de problemas que puedan surgir en el funcionamiento de la cadena.

3.3 Internet de las cosas en el sector salud

El sector salud tampoco se han quedado atrás cuando se trata de IoT, según Quental (2018) indica, “Seis de cada diez organizaciones sanitarias ya están usando IoT para conectar a la red diversos dispositivos, como monitores de pacientes 64% y dispositivos de rayos x/ímagines 41%” (p. 26).

Entre otros usos esta investigación destaca la utilización de sensores para monitorear, mantener dispositivo médicos en un 35% así como el seguimiento remoto de activos por ubicación en un 21%. De esta forma el sector salud, equipa el IoT para optimizar mejorar la monitorización de pacientes, reducir costes y fomentar la innovación:

- Alrededor de un 60% de organizaciones dedicadas al sector salud en el mundo hacen uso del IoT en sus instalaciones, de esta forma convirtiéndose en uno de los sectores más avanzados en su implementación ocupando el tercer lugar.
En las organizaciones a nivel mundial el 42% de administradores coincide en que el monitoreo y el mantenimiento es lo primero en lo que destaca IoT. Cobrando gran importa en la monitorización por parte del IoT de pacientes en la industria de la salud.

3.3.1 Transformación de sector salud.

Los actuales cambios dentro de la Salud tambien se han visto afectados por la tecnología IoT, en ese sentido Quental (2018) refiere que se esta dando un enorme cambio en el sector salud, con la atencion centrada en el consumidor y dirigido a resultados, con un futuro orientado en el consumidor y centrado a la prevención y los resultados.

- La aplicación del IoT es una realidad hoy en día, lo cual es una gran ventaja a la hora de prevenir, permitiendo analizar en tiempo real, permitiendo una atención eficaz a los pacientes.

- La personalización en la atención de los pacientes se ha incrementado en calidad, eficacia e inmediatez gracias a las herramientas para el cuidado que permiten prevenir, que posee una interfaz fácil de manejar y su compatibilidad abarcando en su totalidad los puntos de acceso del proceso.

- El coste del cuidado de la salud de los pacientes ha subido a un nivel que resulta insostenible debiéndose esto último al envejecimiento de la población y el desarrollo de mercado vanguardista

De igual manera, la importancia de reducir costes en la atencion de la salud la implemetacion con tecnologias innovadoras resulta de vital importancia para la sostenibilidad. Los pilares a los que se debe esta transformación son debido a los pacientes, personal médico y la infraestructura.
Pacientes:

Un aproximado de la mitad de pacientes evidencia que las tecnologías innovadoras aplicadas al sector salud mejore las condiciones para el manejar de condiciones coránicas (48%), su tratamiento con medicamentos (48%), y la totalidad de su salud (49%).

Personal Médico:

Los médicos están adoptando la tecnología IoT debido a que hace que se pueda monitorear la condición del paciente, tener acceso a sus registros y una comunicación fluida con sus equipos. Los cambios que genere serán notables en la relación de médico-paciente, lo que permitirá nuevos mecanismos para diagnosticar y tratar.

Infraestructura:

Las organizaciones sanitarias requieren que tanto sistemas como datos críticos se integren, que por lo general se mantienen descentralizados. Generándose requisitos únicos y costes elevados para desarrollar aplicaciones, pruebas e integrarse.

Fundamentándose en tecnologías para la comunicación de datos, un equipamiento de la infraestructura con tecnología IoT resulta eficiente en la organización en general, ver *figura 21*.

En base al tema de infraestructura tecnológica, Schneider Electric (2014) refiere que la aplicación de la tecnología inteligente en la infraestructura a través de intercambio de información inalámbrica hace que sea mejor la experiencia del paciente, así como la eficiencia de la atención:

- Hace posible que los médicos y el personal puedan acceder al historial del paciente desde cualquier lugar.
- Proporciona facilidades para que el personal de enfermería, que le permita una atención más oportuna al paciente.
- Se garantiza la satisfacción de las necesidades del paciente, con el control de iluminación y temperatura requerido por el paciente, entre otros.
- Hacer posible que el paciente pueda comunicarse con sus familiares, haciendo que ambas partes estén tranquilas.
- Mejorando de forma considerable la productividad del personal, al optimizar tiempos para administrar y localizar sistemas.
- Economizar costos en dispositivos, cableado para nuevas construcciones y/o aplicación de actualizaciones en la infraestructura.
- Disminuir los costes de ejecución mediante una confiable disponibilidad de la red, sostenibilidad, valoración y mantenimiento en un tiempo reducido del sistema.

3.3.2 Dispositivos wearables.

La utilización de Dispositivos Wearables es una más de las novedades que trae IoT para el sector sanitario, donde su uso viene en aumento. El término “wearable” tiene raíz inglesa cuya traducción significa “llevable” o “vestible”.

Dispositivos Wearables (2014) en su pagina indica: Wearable refiere a los aparatos y dispositivos eléctricos, que es incorporado a alguna parte del cuerpo humano, así
interactuado de forma continua con el usuario a la vez con otros aparatos con el fin de realizar alguna función específica, relojes de última tecnología, smartwatches, zapatillas con GPS incorporado son algunos ejemplos de muchos aparatos tecnológicos que está ya presente en nuestro diario vivir.

El Comercio (2018) en un blog menciona: Un debate relevante del foro económico de Davos en Suiza de este año, a sido el papel de la tecnología que se incorpora al cuerpo humano, en los avances futuros de los cuidados de la salud, en especial en la prevención y detección anticipada de enfermedades. Haciendo énfasis en la capacidad disruptiva de las tecnologías hechas para ser adherible al cuerpo, se dio a entender que podría ser posible en un futuro muy próximo que sea posible la detección anticipada de un infarto, monitoreando los signos vitales del cuerpo.

Según la revista, el Dr. Michael Snyder de la Universidad de California en Stanford publicó investigación que comienza a moldear la aplicación de tecnología adheribles al cuerpo. En el primer, que publicó PLOS Biología en enero del 2017, consiguió monitorizar enormes cantidades de datos (250,000 mediciones diarias provenientes de 43 voluntarios) los cuales utilizaron tecnología adherible al cuerpo durante 24 meses. Se hace una descripción de un voluntario que por medición de cambios en su pulso, temperatura y concentración de oxígeno en su sangre se logró diagnosticar un caso temprano de enfermedad de Lyme (infección que se transmite por picadura de garrapata). También se demostró en el estudio que la concentración de oxígeno disminuye durante vuelo en avión, lo cual causa cansancio físico.

En una segunda investigación que publicó PLOS Biología en julio del 2018 Snyder analizó 500,000 medidas de glucosa en sangre en 57 voluntarios sin antecedentes de diabetes, se descubrió que después de ingerir el mismo tipo de alimentos, la cantidad de azúcar presente en la sangre difería por un gran margen de diferencia. En los voluntarios
denotando que personas aparentemente sanas ya presentaban pre-diabetes. En resumen, si una persona usa el dispositivo de tecnología vestible podría detectar, algún signo de diabetes midiendo sus niveles de glucosa con antelación haciendo posible la intervención temprana de la enfermedad.

Con respecto a la tecnología adherible al cuerpo en el campo sanitario aún estamos en los inicios de su desarrollo dejando claro que tiene un potencial indudable. Se ha denominado Fisioma al conjunto de indicadores fisiológicos de una persona para expresar el funcionamiento total. Los dispositivos vestibles tiene como objetivo la medición de las diversas funciones biológicas de un ser viviente, a su vez interpretando esos signos a través de tecnología inteligente de los diferentes estados de salud de un individuo, como se aprecia en la Figura 23.

Es vital ser cuidadoso con las interpretaciones de las medidas que realiza los dispositivos adheribles al cuerpo como el Fitbit y otros aparatos de tecnología inteligente.

![Figura 22. Objetos inteligentes wearable fit. Fuente: Agencia EFE, 2018.](image)

3.4 El internet del medio ambiente

Como ya hemos mencionado, Internet de las Cosas es un concepto basado en la interconexión de cualquier objeto con cualquier otro de su alrededor. Es decir que todo en
nuestro entorno se encuentre conectado entre sí y con nosotros mismos. En un futuro muy próximo, todo estará automatizado para realizar tareas de forma remota.

El Medio Ambiente no es ajeno al IoT, ya desde hace algunos años se viene implementando sistemas para medir la calidad del aire, ayudar a las especies en peligros de extinción mediante sensores, la agricultura, entre otros. En ese sentido esta investigación también ha querido profundizar y mencionar algunos casos de como IoT ayuda con el medio ambiente.

IoT viene contribuyendo con el medio ambiente, para lo cual Muñoz (2018) menciona algunos ejemplos donde se vienen aplicando:

- Para el entorno rural, IoT implemento sensores que ayudaron a detectar incendios forestales, esto mediante dispositivos con sensores de humedad y temperatura que llegan a activar una alerta dando la posibilidad de actuar inmediatamente y no haya consecuencias graves.
- Así mismo, IoT también está apoyando a la fauna, tenemos por ejemplo el Lince Ibérico, animal que se encontraba al borde de la extensión en España. Gracias al IoT, se les implantó unos collares con GPS el cual ha permitido monitorearlos conociendo su ubicación y las actividades que realizan.
- De igual manera, los distintos sensores IoT también están apoyando la fauna salvaje evitando la caza furtiva en las áreas de África, lugar donde estas prácticas de dan de manera habitual. Poner rastreadores GPS, cámaras y monitores ha permitido registrar datos como es su nivel de estrés los animales el cual permite que los investigadores intervengan de manera inmediata.
- IoT también viene apoyando al ecosistema, en un futuro el medio ambiente necesitará de sensores que puedan medir la calidad del aire y del agua, así como los niveles de contaminación.
3.4.1 Agricultura conectada.

El Perú no es ajeno a esta transformación, en algunos lugares de la parte andina de nuestro país ya se vienen implementando sistemas que monitorean las temperaturas y los cambios del medio ambiente.

Telefónica IoT Team (2016) menciona que una agricultura sostenible y eficaz repercute de forma positiva en el medio ambiente. Donde se utiliza tecnología inteligente en el riego y sensores en los invernaderos. Se promueve el riego inteligente en el sur de California como un método contra las sequías, temporales, administrado el uso del agua midiendo la humedad de los suelos. Se está incluyendo la utilización de drones para utilizar los fertilizantes y productos agroquímicos además de recabar información de los suelos por fotografías aéreas.

3.4.2 Eficiencia energética.

Telefónica IoT Team (2016) también nos habla de un informe de Boston Consulting Group, el cual concluyó que los métodos para aminorar el efecto en el medioambiente que usa tecnología inteligente podría reducir el impacto en el clima en un 16,5% para el 2020 lo cual resulta más óptimo y eficaz que otro tipo métodos. Las mejoras incluyen, gestión de energía de Smart Homes y Smart Buildings, uso eficaz de electrodomésticos, administración de activos aplicado a la logística y gestión inteligente de los motores industriales.

La energía que se requiere para que millones de dispositivos puedan añadirse al IoT es exorbitante y es algo que no puede ignorarse. Es vital realizar esfuerzos para un IoT que consuma el mínimo de energía para que sea sostenible para el ambiente. El LPWA (redes de amplio espectro y de bajo consumo) lleva la idea tan presente que esta hasta en el nombre. En un futuro muy próximo, los sensores LPWA funcionaran bajo circunstancias que no podrá abastecer el IoT actual. Así también se ubicarán bajo tierra y alejado de una
antena, con una batería de vida útil de muchos años, que denota que el impacto ambiental se reducirá considerablemente, de esta manera contribuyendo con el medio ambiente, ver figura 23.

3.5 Edificaciones inteligentes

El concepto de Edificio Inteligente ya no resulta tan abrumador como lo fue en sus inicios, la mayoría lo refería con robots en casa y las computadoras toman control del hogar. Los últimos años nos han brindado mejoras en la velocidad y la disponibilidad de los servicios de Internet, como también avances en la computación en la nube y la tecnología de los sensores. Estas mejoras técnicas, junto con recientes desarrollos en la automatización y la inteligencia artificial, han creado un mundo sumamente digitalizado. Actualmente la digitalización afecta todos los aspectos de nuestras vidas cotidianas, incluso en nuestro hogar, tema del cual necesitamos saber más a fondo en esta investigación.

La tecnología de los hogares inteligentes se ha vuelto muy popular y su popularidad crece cada año a medida que evoluciona la tecnología. ¿A quién no le resulta atractivo subir o bajar el termostato mientras se encuentra en el trabajo o que el refrigerador ordene la entrega de alimentos cuando llegue a su hogar? ¿No es genial comprobar que su hijo adolescente esté haciendo su tarea para el hogar después de la escuela mediante la activación de cámaras de seguridad en el hogar?
Para este trabajo definimos una edificación inteligente: “Cuando puede realizar de forma automatizada y controlada sin la necesidad de intervención humana, diferentes demandas de seguridad, eficiencia energética, confort, actividades mecánicas, mantenimiento y operaciones, dentro del marco de la normativa actual”.

Entonces incluir las tecnologías nuevas de la información y los sistemas de automatización de equipos a los nuevos proyectos constructivos, logrando aplicaciones que apliquen en su construcción: aplicaciones de entretenimiento, monitoreo del estado de salud, automatizar los quehaceres del hogar. Una gestión eficiente de energía, trabajo a distancia incluso mantenimiento y reparación de mal funcionamiento entre muchos otros usos.

3.5.1 Características de las edificaciones inteligentes.

Según IDboxRT (2018) indica que hay toda una serie de posibilidades con respecto a las aplicaciones que pueden desarrollarse a través de las redes informáticas y los equipos personales, en edificios, casas, instalaciones industriales por ello se requiere mencionar algunas características para que podamos estar satisfechos con los beneficios sustanciales a la hora de optar por esas edificaciones.

- **Sistemas optimizados de HVAC**: Optimizar los sistemas de calefacción, aire acondicionado en una edificación, esto controlado por un software el cual podría monitorear los flujos de agua, velocidad en los ventiladores y manteniendo temperaturas adecuadas para cada ambiente (párr. 5).

- **Reducciones equivalentes de electricidad**: Mantener el consumo de electricidad en sus niveles sostenibles, sobre todo en el verano que se hace un gasto incrementado en calefacción y ventiladoras. Es el caso del Programa de Reducción
de Carga Programada de PG & E quien fomenta en sus propietarios reducir el consumo de energía mediante sistemas para la gestión de edificios inteligentes.

- **Ser altamente seguros:** Busca un alto nivel de seguridad, para los casos de delincuencia, accidentes y/o desastres. Para eso implementa herramientas según cada situación ya sea mediante sensores de temperatura o controles de acceso.

- **Sensores inteligentes:** Construir edificios usando material y sistema más eficiente debiera ser una de las prioridades, esto podrá favorecer en el ahorro de muchos costos como es el agua y la electricidad. Instalación de ascensores que reduzcan consumo de energía es un requisito básico que debe tener una construcción inteligente.

- **Acceso remoto a los sistemas del edificio:** Al día de hoy, usar tecnología inteligente implica gran parte a la “domótica”, el cual desarrolla programación cada vez más evolucionada para monitorear y controlar los edificios inteligentes.

Edificios inteligentes o Smart buildings, es algo en lo que se viene trabajando actualmente y por lo que vienen apostando grandes compañías. Posee características extraordinarias donde muchos sistemas están interconectados.

3.5.2 Smart grids.

Hablar de Smart grids, un tema que cada año crece, para ello Grupo Novelec (2017) refiere que un Smart Grid incluye, frente a las redes anticuadas, la tecnología inteligente que se requiere para un intercambio de información rápida entre ambas partes se dé entre las instalaciones y el usuario, En otras palabras, es inteligente. Apoyándose del internet, una Smart Grid usa herramientas informáticas y domóticas, también la tecnología más innovadora y el equipamiento más avanzado, para dar una respuesta en adecuada y óptima gran demanda de energía.
Para hacer todo esto posible, las Smart Grids incluyen un sistema informático automatizado, que puede responder automáticamente a las fluctuaciones de la producción de la energía, aunque también de la demanda. De esta manera se llega a una situación en que ambas partes tanto usuario como proveedor puedan tener conocimiento de la información del consumo para hacer un seguimiento del uso responsable de la energía: desde las plantas generadoras hasta el sistema doméstico, ver figura 24.

3.5.3 Asistentes virtuales para el hogar.

Grandes compañías como Apple, Google y Amazon, ya vienen trabajando en asistentes virtuales con quien el usuario podrá interactuar y brindar ordenes mediante comandos de voz. Estos asistentes facilitan mucho los hogares inteligentes ya que mediante la red pueden controlar distintos dispositivos, programar alarmas, agenda, etc. Los asistentes virtuales como SIRI de Apple, Echo de Amazon o Google Home ya están en los distintos mercados con estas novedades en IoT.

Conectados a la domótica de tu casa, es posible controlar con la tecnología inteligente o hacerlo uno mismo usando los comandos de voz.

Con un diseño ajustado a la moda, se saca provecho de los avances de la inteligencia artificial para interactuar con el usuario o dando instrucciones para saber qué hacer en
ciertos casos ver figura 25. En un futuro próximo, será posible conectarse al refrigerador ver lo que hace falta y hacer la compra para abastecer de forma automática online, lo que se requiera, concertar citas con el dentista, estilita y un gran etc.

Figura 25. Tecnología Asistentes virtuales de hogar. Fuente: Gear Patrol, 2017

3.6 Cuestiones relacionadas con la seguridad

La llegada de la tecnología de las cosas, enlazada al diario vivir promete comodidad, eficiencia y entendimiento, aunque también crea una plataforma de riesgo que se compartan. Gartner anuncia que alrededor 20 billones de dispositivos ya estarán conectados para el 2020. Comenzando desde monitores actividad física hasta termostatos, cerraduras y electrodomésticos inteligentes, en todo lo que se le pueda ocurrir a uno (IoT por sus siglas en inglés) es el futuro del mercado masivo, finalmente revolucionara la forma de interacción de las personas con lo que les rodea.

El grado en que los consumidores se fíen de las IoT es vital para que se desarrolle, aunque muchos productos salen al mercado demasiado pronto sin tener en cuenta las protecciones básicas de seguridad y privacidad. Esto genera riesgos tanto para internet como para los usuarios desde fuga de información hasta riesgos físicos (por ej., cerraduras inteligentes) hasta video vigilancia usadas como parte de una red de bots para sabotear internet. Dando muchas veces como resultado que grandes cantidades de información
delicada termine en manos equivocadas y negociadas en el mercado abierto. La mayor parte de estos dispositivos no tienen la funcionalidad (o un método fácilmente descubrible) para eliminar información valiosa sin dejar rastro.

Debido a la falta de práctica de protocolo de seguridad y protección de privacidad responsables se está llegando a un dilema donde quizá se tenga que implementar un regulador. Aunque las normas por sí solas no serán eficaces. El establecimiento de regulaciones tardaría y no podría competir con el ritmo del riesgo que evoluciona continuamente.

En reacción alrededor de cien actores representantes de la industria, gobierno y defensores del consumidor aportaron a un grupo de acciones relevantes para incorporar a la Online Trust Alliance (OTA), que actualmente es una iniciativa de Internet Society. La aplicación de este *Marco de confianza IoT* incrementa el nivel de seguridad de los dispositivos IoT. El marco cumple diversas funciones ya que:

- Orienta las ediciones de fabricantes y de los que provén relacionados al diseño y a las políticas de negocios desde su diseño hasta su fabricación y su uso.
- Proporciona a los consumidores y a los distribuidores los estándares que se requieren para evaluar la seguridad y privacidad y da a los que elaboran los protocolos de seguridad y principios necesarios para el desarrollo una defensa y políticas de ahorro de costo informadas.

El marco de confianza de IoT es único de dos formas significativas:

- Comprende temas de seguridad, privacidad y sostenibilidad a largo plazo (ciclo de vida). Varios se centran solamente en la seguridad o privacidad, pero son pocos los que tiene en cuenta los ciclos de vida que tiene que ver con los dispositivos y servicios, cómo la transferencia de información y cuentas que
atañen con un hogar inteligente o cómo actuar en caso de que no estén disponibles para un dispositivo que tiene larga vida como un control para abrir y cerrar una puerta de garaje.

- Abarcar el ecosistema de forma general. Esto implica dispositivos/sensores, aplicaciones móviles y servicios de backend. Es su mayoría los marcos solo se enfocan en los dispositivos, aunque un sistema es tan fuerte como su parte más débil.

El marco atañe un abanico factible de ocho categorías. Si se los pone en práctica esos principios pueden disminuir el riego de seguridad y privacidad fomentar la confianza en los usuarios y posibilitar la prosperidad del IoT:

- **Autenticación.** – autenticación de dispositivos con el fin de prevenir violación de seguridad.
- **Encriptación.** - Encriptar datos diligentemente de esta forma prevenindo espionaje.
- **Seguridad.** – la seguridad debe estar incorporada en a todo tanto a dispositivos, aplicaciones y servicios de backend, ya sea que se ofrezcan de forma directa o a través de intermediarios. Realizándose pruebas y actualizaciones periódicamente para reducir riesgos.
- **Actualizaciones.** – hacer presente a los usuarios de la capacidad de actualización del dispositivo y de la entrega segura de estas actualizaciones con intervención o impacto mínimo para el consumidor (ej., que se requiera reconfiguración).
- **Privacidad.** – propagar de forma clara las políticas con respecto a la privacidad, como con relación con recabar y compartir información y as se mantenga un límite necesario para mantener el correcto funcionamiento.
- **Divulgaciones.** – propagar la información esencial sobre políticas, seguridad, privacidad, soporte, entre otros facilita al usuario tomar decisiones acertadas.

- **Control.** – los usuarios tienen acceso a opciones y control sobre la información recolectada por el dispositivo, así como la facilidad de compartir o eliminar los datos en caso de pérdida o venta.

- **Comunicaciones.** – la comunicación con el usuario luego de la transacción (por ejemplo, información sobre actualizaciones/soporte) tiene que ser establecidas y aseguradas proactivamente utilizando las mejores acciones de agentes maliciosos.

Afianzar los estándares de seguridad y privacidad apropiados para productos y servicios IoT es una responsabilidad común. Las bases del marco pueden ser usado por un abanico de actores para realizar su papel de defender a los consumidores y a Internet.

- **Vendedores IoT y la cadena de suministro.** - continuando con estas bases los vendedores les es posible incrementar la confianza de consumidores en las soluciones que proporciona IoT. Para engendrar consciencia y acentuar a los líderes que tiene como prioridad la seguridad y privacidad del consumidor, Internet Society está solicitando a los proveedores que tengan compromiso con los principios de marco.

- **Canales de Distribución.** - Los principios del marco pueden usarse como filtrador para saber qué productos vender, consolidando mejor seguridad y privacidad para los usuarios

- **Legisladores y agencias gubernamentales.** - Internet Society exige que los principios del marco se empleen para orientar políticas, leyes y regulaciones que con respecto a productos y servicios IoT con el fin de disminuir riesgos de seguridad y privacidad tanto para compradores como para las empresas. También
los gobiernos como grandes compradores pueden utilizar el marco como principio de compra.

- **Organizaciones de prueba y reseña de productos.** - Internet Society exige que los principios del marco se adhieran en el transcurso de prueba y reseña. Tener conocimiento de esto en los usuarios favorece a una mejor toma de decisiones.

- **Consumidores y empresas.** - Tanto consumidores y empresas les es factible utilizar principios del marco como referencia para la toma de decisiones acertadas. Para facilitarlo Internet Society proporciona listas de verificación para usuarios y empresas que resumen los principios imprescindibles.

En síntesis, la promisión de comodidad, eficiencia y entendimiento de un Internet de las cosas conectado es amenazada por riesgos que resultan innecesarios debido a que son introducidos por seguridad y privacidad que en su mayoría son de productos y servicios IoT de la actualidad. El Marco de confianza IoT de Internet Society distingue los requerimientos indispensables que deben entender, evaluar y adoptar fabricantes, proveedores de servicio, distribuidores/compradores y legisladores como parte del Internet de tecnología IoT (Internet Society, 2018).
Capítulo IV

Proyecto tecnológico

4.1 Control de una casa domótica con celular vía WiFi

4.1.1 Descripción del proyecto.

El presente proyecto se elaboró para poder apoyar a los docentes con un módulo didáctico, y a la vez pueda ser utilizado para explicar a los estudiantes de la especialidad, sobre el funcionamiento básico de una Casa Domótica. La tecnología no para, cada día nos sorprende con nuevos dispositivos, más modernos y más sofisticados que nos ayudan mucho a organizarnos y a ganar tiempo; pero, sobre todo tienen un costo accesible.

Iniciando así, para el ensamblado del proyecto se utilizará material de madera y PVC transparente (también podríamos usar tecnopor), estos materiales le darán la resistencia suficiente a la hora de insertar los circuitos y a la vez agregaremos detalles a nuestra maqueta con materiales de reusó que le darán algo más de presencia y realidad a lo que será nuestro hogar inteligente.
La placa que usaremos será NodeMCU, un firmware open source (código abierto) que se puede programar en Arduino por su facilidad, o algún otro microprocesador que hay a la venta a costos accesibles para los estudiantes, ver figura 26.

4.1.2 Materiales.

Componentes Electrónicos:

- NodeMCU V1.0
- Sensor DHT11.
- Leds Blancos de 5mm.
- Resistencias de 220Ω.
- Cable Unifilar.

Figura 26. Placa NodeMCU con sistema de wi fi. Fuente propia

Otros:

- Casita de Madera o Tecnopor
- AppInventor.
- Cable Usb.

4.1.3 Herramientas.

- Alicate.
- Multimetro.
- Protoboard.
- Cauíl.
- Tijera.
- Silicona Líquida.
- Temperas.

4.2 Guía de laboratorio

Casa domótica con NodeMCU: Para la elaboración de este proyecto, es necesario conocer y entender la utilidad de la Placa NodeMCU, el sensor DHT11, así como lograr un nivel de conocimiento básico en la plataforma de App Inventor. Reconocer las partes y funcionalidad ayudara a los estudiantes puedan utilizar y aplicarlo no solo para este si no para otros futuros proyectos. Por un lado, está la programación de la placa NodeMCU en Arduino y por otro lado la elaboración de una App que pueda controlar la Casa Domótica mediante Wifi, el cual será desarrollado en el entorno de APP Inventor. Ambos entornos son de fácil acceso e instalación para el desarrollo de este proyecto.

4.2.1 NodeMCU kit de desarrollo para IoT.

Programar Facil (2019) menciona que:

NodeMCU es una placa de desarrollo totalmente abierta, a nivel de software y de hardware. Al igual que ocurre con Arduino, en NodeMCU todo está dispuesto para facilitar la programación de un microcontrolador. No hay que confundir microcontrolador con placa de desarrollo. NodeMCU no es un microcontrolador al igual que Arduino UNO tampoco lo es. Son placas o kits de desarrollo que llevan incorporados un chip que se suele llamar SoC (Sytem on a Chip) que dentro tiene un microcontrolador. Para entender mejor se muestra la figura 27 (párr. 6).
NodeMCU fue una de las primeras placas de desarrollo con el microcontrolador ESP8266. Hasta entonces este chip solamente estaba disponible como placas ESP-xx como ESP01 o ESP12 (párr. 7).

NodeMCU se popularizó rápidamente porque permitía programar este microcontrolador de una manera mucho más sencilla que utilizando el kit de desarrollo de Espressif. Su diseño integra la electrónica necesaria. Para utilizarla no hace falta nada más que un cable USB y un ordenador. Este concepto enchufar y listo es el mismo que usan las placas de Arduino y por lo cual se recomienda su uso para este proyecto (párr. 8).

Entonces, para iniciar se debe instalar el driver de la Placa NodeMCU para que pueda ser programada en el entorno de Arduino donde podremos realizar la programación del NodeMCU para el control de los LEDs y el sensor de temperatura, es indispensable agregar la tarjeta a la plataforma de Arduino antes de iniciar a programar en NodeMCU.

4.2.2 Instalación de la placa NodeMCU a la plataforma arduino.

Paso 1: Al abrir Arduino necesitamos incluir el driver de la Placa NodeMCU y la librería del Sensor DHT11 para que pueda ser reconocido por el entorno de Arduino, ver figura 28.
Figura 28. Instalación de NodeMCU. Fuente propia.

Paso 2: En la pestaña Archivo, nos dirigimos a “Preferencias” y nos ubicamos en el “Gestor de URLs”, ver figura 29. Aquí agregaremos el link del driver del NodeMCU:

Paso 3: Nos dirigimos a la pestaña Herramientas en la sección “Placa” y seleccionamos “Gestor de tarjetas”, ver figura 30. Una vez aparezca el cuadro buscamos el “esp8266” el cual daremos en instalar, ver figura 31.

Figura 30. Agregar la placa de NodeMCU. Fuente propia.

Figura 31. Instalación de la placa NodeMCU. Fuente propia.

Paso 4: Seleccionamos la Placa NodeMCU ya ha sido instalada instalada y podemos iniciar a programar en la plataforma arduino, figura 32.
4.2.3 Programación en arduino.

Para el Proyecto de la Casa Domótica se utilizó la siguiente programación, donde se explica el orden y las funcionalidades mediante el apartado “//”.

```cpp
#include <ESP8266WiFi.h>  // Driver del NodeMCU instalado
#include <DHT11.h>       // Librería del sensor de temperatura instalado

const char* ssid = "DAET_AUDITORIO";  // Ingresar el nombre de la red Wi Fi
const char* password = "unecantuta";  // Ingresar el Password de la red Wi Fi
const int led_terza = D0;      // Led de la Terraza
const int led_patio = D1;      // Led de la Patio
const int led_sala1 = D2;      // Led de la Sala1
const int led_front = D3;      // Led de la Frontis
const int led_sala2 = D4;      // Led de la Sala2
const int led_escal = D5;      // Led de la Escalera
int pin = D6;                  // Sensor DHT11
DHT11 dht11(pin);
float temp, humi;
```
WiFiServer server(80); // Crea una instancia del servidor

void setup() {
 Serial.begin(115200); // Configurando Velocidad serial
 delay(500);

 // Configurando pines como salida
 pinMode(D0, OUTPUT);
 pinMode(D1, OUTPUT);
 pinMode(D2, OUTPUT);
 pinMode(D3, OUTPUT);
 pinMode(D4, OUTPUT);
 pinMode(D5, OUTPUT);

 // Conecta a una red wifi
 Serial.println();
 Serial.print("Conectado.. ");
 Serial.println(ssid);
 WiFi.begin(ssid, password);
 // Espera hasta que NodeMCU se conecte al Modem
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println(" ");
 Serial.println("WiFi conectado");

 // Inicia el servidor
 server.begin();
 Serial.println("Servidor Iniciado");
// Imprime la dirección IP
Serial.println(WiFi.localIP());
}

void loop() {
 int err;
 // Sensor DHT11
 if((err=dht11.read(humi, temp))==0)
 {
 Serial.print("Temperatura:");
 Serial.print(temp);
 Serial.print(" Humedad:");
 Serial.print(humi);
 Serial.println();
 }
 //delay(DHT11_RETRY_DELAY); //Tiempo para volver a leer
delay(100);

 // Revisa si hay conexiones establecidas…
 WiFiClient client = server.available();
 if (!client) {
 return;
 }
 // Espera hasta que el cliente envie datos
 Serial.println("Nuevo cliente");
 while(!client.available()){
 delay(1);
 }
 // Lectura de la primera línea de la respuesta
 String req = client.readStringUntil(\r');
 Serial.println(req);
client.flush();

// Match the request
int val;
if (req.indexOf("/terza/ON") != -1)
{ digitalWrite(led_terza,HIGH); }
else if (req.indexOf("/terza/OFF") != -1)
{ digitalWrite(led_terza,LOW); }
else if (req.indexOf("/sala1/ON") != -1)
{ digitalWrite(led_sala1,HIGH); }
else if (req.indexOf("/sala1/OFF") != -1)
{ digitalWrite(led_sala1,LOW); }
else if (req.indexOf("/sala2/ON") != -1)
{ digitalWrite(led_sala2,HIGH); }
else if (req.indexOf("/sala2/OFF") != -1)
{ digitalWrite(led_sala2,LOW); }
else if (req.indexOf("/patio/ON") != -1)
{ digitalWrite(led_patio,HIGH); }
else if (req.indexOf("/patio/OFF") != -1)
{ digitalWrite(led_patio,LOW); }
else if (req.indexOf("/escal/ON") != -1)
{ digitalWrite(led_escal,HIGH); }
else if (req.indexOf("/escal/OFF") != -1)
{ digitalWrite(led_escal,LOW); }
else if (req.indexOf("/front/ON") != -1)
{ digitalWrite(led_front,HIGH); }
else if (req.indexOf("/front/OFF") != -1)
{ digitalWrite(led_front,LOW); }
else if (req.indexOf("/dht11") != -1)
{
String s = "Temp:"+String(temp)+"°C"+ " Humi:"+String(humi)+"%";
client.println("HTTP/1.1 200 OK");
client.println("Content-Type: text/html");
client.println("\r\n");
client.println(s); // Comillas importantes.
Serial.println(s);

}

else {
 Serial.println("Invalida respuesta");
 client.stop();
 return;
}

client.flush(); // Prepara la respuesta
Serial.println("Client desconectado"); // El cliente se desconectará

4.2.4 APP Inventor.

Wikipedia (2015) señala: App Inventor es un entorno de desarrollo de software que fue creado por Google Labs para la elaboración de aplicaciones que funcionen en el sistema operativo Android. Los estudiantes pueden visualizar y mediante el uso de herramientas básicas, podrán ir enlazando una serie de bloques conjuntas para crear su primera aplicación. Este sistema es totalmente gratuito y se puede descargar de la red.

AppInventor nos permite trabajar de manera dinámica la programación, incentivando a que los estudiantes se interesen más en este campo. Finalmente, el armado de la casita y el entorno se podrían desarrollar en clase, una vez desarrollado la programación en Arduino, se grabará en la placa NodeMCU y el Aplicativo será instalado en cualquier celular que tenga Android, instalamos los Leds en diferentes espacios de la casita según la creatividad de cada estudiante.
Aplicación didáctica

Unidad Didáctica

I. Título: La Placa NodeMCU y su desarrollo en el IoT.

II. Datos generales:

1.1. Institución : Colegio Experimental de Aplicación UNE
1.2. Curso : Educación para el Trabajo
1.3. Grado : 4º de secundaria
1.5. Duración : 90 minutos.
1.6. Docente Responsable : BENITO CONDORI, Gerson Teodor

III. Descripción:

La presente Unidad Didáctica busca desarrollar en los estudiantes capacidades y actitudes productivas, emprendedoras y empresariales mediante la elaboración de un proyecto tecnológico que refuerce el aprendizaje sobre El Internet de las Cosas-IoT. Mediante este proyecto los estudiantes podrán entender mejor el cambio actual referente a las nuevas tecnologías que van saliendo al mercado, como es el Internet de las Cosas, sus orígenes, características y aplicaciones a nivel global, así como el impacto y consecuencias que tiene en base al nivel de seguridad y privacidad de quienes la usamos a diario. Todo esto debe ser aprovechado por las oportunidades que brinda el mercado local, nacional y global que cada día exige más profesionales a la vanguardia, esto en el marco de una cultura tecnológica y orientada hacia el logro de competencias laborales identificadas con participación del sector productivo y contribuyendo al desarrollo de la sociedad.
IV. Aprendizaje fundamental

Emprende y desarrolla proyectos tecnológicos de aprendizaje, para satisfacer demandas, resolver necesidades, aspiraciones o problemas de carácter individual o social a fin de alcanzar las metas buscadas.

V. Matriz de progreso del aprendizaje

Al término del proyecto los estudiantes logran desarrollar las siguientes competencias:

<table>
<thead>
<tr>
<th>Mapas de Progreso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área</td>
</tr>
<tr>
<td>GESTIÓN DE PROCESOS</td>
</tr>
<tr>
<td>EJECUCION DE LA PRODUCCIÓN</td>
</tr>
<tr>
<td>COMPRENSIÓN Y APLICACIÓN DE TECNOLOGÍAS</td>
</tr>
</tbody>
</table>

VI. Enfoques transversales:

<table>
<thead>
<tr>
<th>Enfoques Transversales</th>
<th>Relación con el Área</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enfoque inclusivo o de atención a la diversidad</td>
<td>• Todos tienen derecho a oportunidades educativas y resultados de aprendizaje de igual calidad, independientemente de sus diferencias culturales, sociales, étnicas, religiosas, de género, condición socioeconómica, de discapacidad o estilos de aprendizaje.</td>
</tr>
</tbody>
</table>
Enfoque Ambiental

- Formar estudiantes conscientes del cuidado del ambiente, que promuevan el desarrollo de estilos de vida saludables y sostenibles.
- Oportunidades sean equitativas para todos, sin que medien preferencias o discriminaciones de ninguna naturaleza.
- Vivir en paz
- Seguridad y respeto por las opiniones,
- Tradiciones y niveles de desarrollo de nuestros ciudadanos
- En principio y de la humanidad en general.

Enfoque orientación al bien común

VII. Valores y actitudes:

<table>
<thead>
<tr>
<th>Valores</th>
<th>Actitudes frente a los valores Institucionales</th>
<th>Actitudes frente al área</th>
</tr>
</thead>
<tbody>
<tr>
<td>Respeto</td>
<td>Contribuye con la conservación del orden e higiene del aula.</td>
<td>Cumple con las normas de seguridad.</td>
</tr>
<tr>
<td>Responsabilidad</td>
<td>Toma iniciativa para cuidar el patrimonio de su institución, laboratorios, aulas y el entorno local.</td>
<td>Valora la biodiversidad del país y se identifica con el desarrollo sostenible.</td>
</tr>
<tr>
<td>Honestidad</td>
<td>Cuida la propiedad ajena y manifiesta ser justo.</td>
<td>Tiene voluntad y automotivación para el logro de sus metas.</td>
</tr>
<tr>
<td>Solidaridad</td>
<td>Comparte con sus compañeros de trabajo sus conocimientos experiencia y materiales.</td>
<td>Tiene disposición para trabajar cooperativamente y disposición para liderar.</td>
</tr>
</tbody>
</table>
VIII. Organización de las unidades didácticas

<table>
<thead>
<tr>
<th>UNIDADES</th>
<th>TITULO DE LA UNIDAD</th>
<th>TIPO DE UNIDAD</th>
<th>RELACIÓN CON OTRAS ÁREAS</th>
<th>TIEMPO</th>
<th>CRONOGRAMA</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>La placa NodeMCU para Internet de las Cosas - IoT.</td>
<td>Unidad de aprendizaje</td>
<td>Ciencia Tecnología y Ambiente</td>
<td>40 Horas</td>
<td>X</td>
</tr>
<tr>
<td>II</td>
<td>Programación en Arduino y APP Inventor.</td>
<td>Proyecto de aprendizaje</td>
<td>Ciencia Tecnología y Ambiente</td>
<td>40 Horas</td>
<td>X</td>
</tr>
<tr>
<td>III</td>
<td>Elaboración del Proyecto “Casa Domótica”</td>
<td>Unidad de aprendizaje</td>
<td>Ciencia Tecnología y Ambiente</td>
<td>40 Horas</td>
<td>X</td>
</tr>
</tbody>
</table>

IX. Estrategias metodológicas:

- Método de proyectos.
- Método demostrativo.
- Estudio dirigido.
- Técnicas grupales.
- Dinámicas motivacionales.

X. Referencias

https://www.internetsociety.org/es/resources/doc/2015/iot-overview
I. Datos informativos:

1.1. Institución : Colegio Experimental de Aplicación UNE
1.2. Curso : Educación para el Trabajo
1.3. Grado : 4º de secundaria
1.5. Duración : 90 minutos.
1.6. Docente Responsable : BENITO CONDORI, Gerson Teodor

II. Tema:

Instalando la Placa NodeMCU y DHT11 en la plataforma Arduino

III. Aprendizajes esperados:

<table>
<thead>
<tr>
<th>Competencia</th>
<th>Capacidad</th>
<th>Indicadores</th>
</tr>
</thead>
</table>
| Gestión de Procesos Productivos | • Conocer la placa NodeMCU y los usos que tiene en IoT.
• Potenciar su conocimiento respecto a sensores y actuadores.
• Comprende y programa en la plataforma Arduino.
• Conocer y programar en AppInventor. | • Reconoce la Placa NodeMCU y logra instalar el driver en la plataforma Arduino.
• Utiliza los distintos tipos de sensores y actuadores para la programación del hogar inteligente.
• Puede simular un hogar inteligente, mediante la programación de LEDs en Arduino.
• Controla el hogar inteligente mediante WI FI, con el uso del aplicativo creado en AppInventor. |
IV. Valores:

- Respeto.
- Responsabilidad.
- Honestidad.
- Solidaridad.

V. Estrategia metodológica:

<table>
<thead>
<tr>
<th>SITUACIÓN DE APRENDIZAJE</th>
<th>ESTRATEGIAS Y ACTIVIDADES</th>
<th>RECURSOS</th>
<th>TIEMPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>INICIO:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motivación.</td>
<td>Muestro un video breve sobre hogares inteligentes.</td>
<td>Multimedia</td>
<td>5’</td>
</tr>
<tr>
<td>Reוצים de saberes previos.</td>
<td>Recojo los saberes previos preguntando: ¿Qué es el Internet de las Cosas? ¿Existen en la actualidad hogares inteligentes?</td>
<td>Multimedia</td>
<td></td>
</tr>
<tr>
<td>PROCESO:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Análisis de la nueva información.</td>
<td>Entrego a cada estudiante una hoja de información para que lean y analicen.</td>
<td>Hoja De Información</td>
<td>35’</td>
</tr>
<tr>
<td>Aplicación de la nueva información.</td>
<td>Dialogamos y analizamos sobre el tema leído.</td>
<td>Hoja de Práctica</td>
<td></td>
</tr>
<tr>
<td>Evaluación de los aprendizajes.</td>
<td>Entrego una hoja de práctica a los estudiantes para que apliquen lo entendido de la hoja de información.</td>
<td>Laptop</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Asesoroy respondo las preguntas de los estudiantes.</td>
<td>Proyector</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evalúo a los estudiantes mientras desarrollan la práctica.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALIDA:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensión.</td>
<td>Los estudiantes responden las preguntas de la ficha de Metacognición.</td>
<td>Ficha de Metacognición</td>
<td>5’</td>
</tr>
</tbody>
</table>
VI. Evaluación

<table>
<thead>
<tr>
<th>CRITERIO</th>
<th>INDICADOR</th>
<th>INSTRUMENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejecución de</td>
<td>Programa en la plataforma de</td>
<td>Lista de Cotejo</td>
</tr>
<tr>
<td>Procesos</td>
<td>Arduino, instalando el driver de la Placa NodeMCU.</td>
<td></td>
</tr>
</tbody>
</table>

VII. Referencias

__ __
Docente Director
Título: La Placa NodeMCU el kit de desarrollo para IoT

Objetivo: Al término de la lectura el estudiante conocerá la Placa NodeMCU y su uso en las nuevas tecnologías del Internet de las Cosas.

NodeMCU es una placa de desarrollo totalmente abierta, a nivel de software y de hardware. En NodeMCU todo está dispuesto para facilitar la programación de un microcontrolador o MCU (del inglés Microcontroller Unit). Pero lo que se rescata de esta placa es que se puede programar en la plataforma Arduino, haciendo su fácil uso para programar y controlar dispositivos IoT.

No hay que confundir microcontrolador con placa de desarrollo. NodeMCU no es un microcontrolador al igual que Arduino UNO tampoco lo es. Son placas o kits de desarrollo que llevan incorporados un chip que se suele llamar SoC (Sytem on a Chip) que dentro tiene un microcontrolador o MCU.

DHT11:
El DHT11 es un sensor digital de temperatura y humedad relativa de bajo costo y fácil uso. Integra un sensor capacitivo de humedad y un termistor para medir el aire circundante, y muestra los datos mediante una señal digital en el pin de datos.
Nombre: ………………………………………………………………………………………………………..

Título: Instalando la placa NodeMCU en la plataforma de Arduino

Objetivo: Al término de la práctica el estudiante podrá instalar el driver de la placa NodeMCU.

Materiales:
- Computadora
- Placa NodeMCU
- Cable USB

1.- Realizar los siguientes pasos para la instalación de la placa NodeMCU.

Paso 1: Al abrir Arduino necesitamos incluir el driver de la Placa NodeMCU y la librería del Sensor DHT11 para que pueda ser reconocido por el entorno de Arduino.

Paso 2: En la pestaña Archivo, nos dirigimos a “Preferencias” y nos ubicamos en el “Gestor de URLs”. Aquí agregaremos el link del driver del NodeMCU:

Paso 3: Nos dirigimos a la pestaña Herramientas en la sección “Placa” y seleccionamos “Gestor de tarjetas”. Una vez aparezca el cuadro buscamos el “esp8266” el cual daremos en instalar y esperamos unos minutos.

![Imagen del gestor de tarjetas en Arduino IDE](image-url)
Paso 4: Finalizamos seleccionando la Placa NodeMCU ya instalada y podremos iniciar a programar en Arduino.
LISTA DE COTEJO

ÁREA: Educación para el Trabajo.

GRADO: 4º de Secundaria

FECHA: 22 de abril del 2019

ACTIVIDAD: Instalando la placa NodeMCU en la plataforma de Arduino.

DOCENTE: BENITO CONDORI, Gerson

<table>
<thead>
<tr>
<th>INDICADORES</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conoce y entiende el uso de la placa NodeMCU para programación de IoT.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realiza la instalación de la placa NodeMCU en la plataforma Arduino.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Entiende y reconoce cada una de las partes de la placa NodeMCU.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realiza la programación en la plataforma Arduino después de haber instalado el driver.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>APELLIDOS Y NOMBRES</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>01 ÁLVAREZ MUÑANTE, Manuel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02 AQUINO SEMINARIO, Andrea Celeste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03 ARROYO MUÑANTE, Ariana Yulisa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04 AVILES TUESTA, Sofía Sandra</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05 BENITES CERDEÑA, Ana Paula</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>06 CARDENAS ROJAS, Joaquín</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>07 GOYAS CERNA, Juan Matías</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>08 HUAMAN OLIVARES, Denisse Belén</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>09 RAMIREZ VEGA, Diego Hernan</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Escala</th>
<th>Valoración</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Muy Bueno</td>
</tr>
<tr>
<td>4 – 3</td>
<td>Bueno</td>
</tr>
<tr>
<td>2</td>
<td>Regular</td>
</tr>
<tr>
<td>1</td>
<td>Deficiente</td>
</tr>
</tbody>
</table>
Apreciación crítica y sugerencias

Internet de las cosas modificara fuertemente la manera de comunicarnos con los objetos y nuestro entorno, esta tecnología promete mejorar la calidad de vida de los seres humanos en los distintos ámbitos en los que nos relacionamos, desde el cuidado del medio ambiente, el monitoreo y ahorro de recursos (agua, gas, energía), equipamientos médicos que permitirán controlar las enfermedades, vehículos inteligentes, entre muchos. Todos estos objetos interconectados de la manera que cada uno nos brindara un beneficio importante para quienes lo requieran.

La seguridad en Internet de las Cosas es muy importante, es que IoT ha calado tanto en los distintos sectores que una de las mayores preocupaciones es esta. Hablamos de sistemas que al existir infiltraciones podrían causar pérdidas de vidas humanas, perdida de dinero mediante operaciones financieras, problemas masivos en la sociedad, algo tan común como los vehículos automáticos y el riesgo que podría ocasionar que algún otro usuario se infiltre y manipule los controles con el auto en movimiento. De esta manera la existencia de objetos por el cual dependen personas y son susceptibles, es prioridad solucionar para que no se comprometan vidas humanas. Todo esto debe ser considerado en un nivel básico como es la concientización de la seguridad informática y así ser adoptados de una manera sólida.

El Open Source Hardware/Software son comunidades online de colaboración donde se encuentran involucrados profesionales, estudiantes, usuarios, miembros de empresas de tecnologías, siendo el lugar propicio para compartir diferentes conocimientos en ámbitos de tecnología permitiendo integrar de manera variada experiencias sobre soluciones a problemas presentados y proponer temas de discusión de los cuales sacar beneficio, todo esto crea una base de conocimiento compartido adecuado para desarrollar mejores
alternativas de solución a ciertas vulnerabilidades detectadas en objetos, dispositivos o sistemas.

Que los organismos nacionales e internacionales reguladores de las telecomunicaciones como el MINTEL, IEEE (Institute of Electrical and Electronics Engineers), ITU (Unión Internacional de Telecomunicaciones), IETF (Internet Engineering Task Force), ISOC (Internet Society) e ISO generen políticas y procedimientos de seguridad sólidos que permitan salvaguardar la integridad física y lógica con fuertes estándares de cumplimiento.

Se recomienda que en la Facultad se aborde más el tema del Internet de las Cosas, siendo muy necesario que en estos tiempos los estudiantes egresen con las competencias necesarias para enfrentarse a un mundo cada vez más tecnológico lo cual hace que la sociedad necesite profesionales tecnológicos y a la vanguardia.

La investigación realizada sirva de aporte base para la adopción e implementación del Internet de las Cosas, en donde las empresas y grupos de interés puedan fomentar la confianza en los usuarios creando objetos y entornos IoT seguros inherentes al beneficio que aporta para mejorar su calidad de vida.

Que las empresas peruanas incursionen más en el desarrollo e implementación de entornos IoT; para ello, deben tener como finalidad crear confianza y/o seguridad en la población con el objetivo claro de garantizar la privacidad, seguridad, estabilidad e integridad de la información que comparten, ganando confianza en las personas que en muchas partes del Perú aun sienten ese temor de incursionar en el uso de nuevas tecnologías de alguna manera viéndose perjudicados en una sociedad tan moderna que se aproxima.
Referencias

https://www.rfidjournal.com/articles/view?4986

Blue Service (2018). ¿Para qué sirve el IoT? Recuperado de
http://blueservicesa.com/iot/para-que-sirve-el-iot/

Deloitte (2019) *La Inteligencia Artificial, clave para el futuro del IoT*. Recuperado de

https://elcomercio.pe/blog/cuidatusalud/2018/09/los-wearables-y-la-salud

https://www.fundacionbankinter.org/detalle-evento/internet-de-las-cos-1

Grupo Novelec (2017) ¿*Cómo funciona una Smart Grid?* Recuperado de
https://blog.gruponovelec.com/electricidad/como-funciona-smart-grid/

Pajares, A. A. (2016) *Estudio de la implantación de Internet de las Cosas, en las redes Logísticas de la Cadena de Suministro (Tesina de Master)*. Universidad Politecnica de Valencia.

Schneider Electric (2014) 8 maneras en que los hospitales pueden beneficiarse de una “infraestructura inteligente”. Recuperado de https://blog.schneider-electric.com/healthcare/2014/02/05/8-ways-hospitals-can-benefit-intelligent-infrastructure/

Telefonica IoT Team (2016) 5 maneras en las que el IoT está ayudando al medio ambiente. Recuperado de https://iot.telefonica.com/blog/5-maneras-en-las-que-el-iot-esta-ayudando-al-medio-ambiente

Glosario

AIOTI: Alliance for Internet of Things Innovation.

Backend: Plataforma de administración de sistemas

CERN: Organización Europea para la Investigación Nuclear

CIO: Director de sistemas de información

CoAP: Protocolo de aplicación con restricciones.

C2S: Cliente a Sitio

DHCP: Protocolo de configuración dinámica de host

DTLS: Seguridad en la capa de transporte de datagramas

EPC: Ingeniería, Adquisición y Construcción

GPS: Sistema de Posicionamiento Global

HTML: Lenguaje de Marcas de Hipertexto

IDS/IPS: Sistema de Detección de Intrusos/ Sistema de Prevención de Intrusos

IA: Inteligencia Artificial

IANA: Autoridad de Asignación de Números en Internet

IAB: Comité de Arquitectura de Internet

ISP: Proveedor de servicios de internet

IoT: Internet de las Cosas

IPsec: Protocolo de Seguridad en Internet

LAN: Red de área local
LPWA: Área amplia de baja potencia

M2M: Maquina a Maquina

M2P: Maquina a Persona

PAN: Red de área personal

RFS: Sistema de radio frecuencia

RIR: Registro regional de internet

RFID: Identificación de Radio Frecuencia

SLA: Acuerdos a nivel de servicio

SSL: Capa de conexión segura

S2S: Sitio a Sitio

SQL: Lenguaje de Consulta Estructurado

SSH: Interprete de Órdenes Seguras

TICs: Tecnologías de la información y la comunicación

TLS: Seguridad de la capa de transporte

UIT: Unión Internacional de Telecomunicaciones

VoIP: Voz sobre IP

VPN: Red Privada Virtual

WAN: Red de área amplia

WPA/WPA2: Acceso Wi-Fi Protegido / Acceso Wi-Fi Protegido versión 2